ARTICLESAnandamide, the naturally occurring amide of arachidonic acid with ethanolamine, meets all key criteria of an endogenous cannabinoid substance 1 : it is released on demand by stimulated neurons 2,3 ; it activates cannabinoid receptors with high affinity 1 ; and it is rapidly eliminated through a two-step process consisting of carrier-mediated transport followed by intracellular hydrolysis 2,4 . Anandamide hydrolysis is catalyzed by the enzyme fatty acid amide hydrolase (FAAH), a membrane-bound serine hydrolase 5,6 that also cleaves other bioactive fatty acid ethanolamides such as oleoylethanolamide 7 and palmitoylethanolamide 8 . Mutant mice lacking the gene encoding FAAH (Faah) cannot metabolize anandamide 9 and, although fertile and generally normal, show signs of enhanced anandamide activity at cannabinoid receptors such as reduced pain sensation 9 . This is suggestive that drugs targeting FAAH may heighten the tonic actions of anandamide, while possibly avoiding the multiple and often unwanted effects produced by ∆ 9 -tetrahydrocannabinol (∆ 9 -THC) and other direct-acting cannabinoid agonists 10,11 . To test this hypothesis, potent, selective and systemically active inhibitors of intracellular FAAH activity are needed. However, most current inhibitors of this enzyme lack the target selectivity and biological availability required for in vivo studies [12][13][14] , whereas newer compounds, though promising, have not yet been characterized 15,16 . Thus, the therapeutic potential of FAAH inhibition remains essentially unexplored. Lead identification and optimizationDespite its unusual catalytic mechanism 6 , FAAH is blocked by a variety of serine hydrolase inhibitors, including compounds with activated carbonyls 16 . Therefore we examined whether esters of carbamic acid such as the anti-cholinesterase agent carbaryl (compound 1; Table 1) might inhibit FAAH activity in rat brain membranes. Although compound 1 was ineffective, its positional isomer 2 produced a weak inhibition of FAAH (half-maximal inhibitory concentration (IC 50 ) = 18.6 ± 0.7 µM; mean ± s.e.m., n = 3), which was enhanced by replacing the N-methyl substituent with a cyclohexyl group (compound 3; IC 50 = 324 ± 31 nM). The aryl ester 4, the benzyloxyphenyl group of which can be regarded as an elongated bioisosteric variant of the naphthyl moiety of compound 2, inhibited the activity of FAAH with a potency (IC 50 = 396 ± 63 nM) equivalent to that of compound 3. A conformational analysis of compound 4 revealed families of accessible conformers differing mainly in the torsion angle around the O-CH 2 bond, with substituents in anti or gauche conformations (data not shown). As the latter conformations more closely resembled the shape of the naphthyl derivative 3, we hypothesized that they might be responsible for the interac-
The endogenous cannabinoids (endocannabinoids) are lipid molecules that may mediate retrograde signaling at central synapses and other forms of short-range neuronal communication. The monoglyceride 2-arachidonoylglycerol (2-AG) meets several criteria of an endocannabinoid substance: (i) it activates cannabinoid receptors; (ii) it is produced by neurons in an activity-dependent manner; and (iii) it is rapidly eliminated. 2-AG inactivation is only partially understood, but it may occur by transport into cells and enzymatic hydrolysis. Here we tested the hypothesis that monoglyceride lipase (MGL), a serine hydrolase that converts monoglycerides to fatty acid and glycerol, participates in 2-AG inactivation. We cloned MGL by homology from a rat brain cDNA library. Its cDNA sequence encoded for a 303-aa protein with a calculated molecular weight of 33,367 daltons. Northern blot and in situ hybridization analyses revealed that MGL mRNA is heterogeneously expressed in the rat brain, with highest levels in regions where CB1 cannabinoid receptors are also present (hippocampus, cortex, anterior thalamus, and cerebellum). Immunohistochemical studies in the hippocampus showed that MGL distribution has striking laminar specificity, suggesting a presynaptic localization of the enzyme. Adenovirus-mediated transfer of MGL cDNA into rat cortical neurons increased MGL expression and attenuated N-methyl-D-aspartate/carbachol-induced 2-AG accumulation in these cells. No such effect was observed on the accumulation of anandamide, another endocannabinoid lipid. The results suggest that hydrolysis by means of MGL is a primary mechanism for 2-AG inactivation in intact neurons
To identify structural characteristics of the closely related cell surface receptors for insulin and IGF‐I that define their distinct physiological roles, we determined the complete primary structure of the human IGF‐I receptor from cloned cDNA. The deduced sequence predicts a 1367 amino acid receptor precursor, including a 30‐residue signal peptide, which is removed during translocation of the nascent polypeptide chain. The 1337 residue, unmodified proreceptor polypeptide has a predicted Mr of 151,869, which compares with the 180,000 Mr IGF‐I receptor precursor. In analogy with the 152,784 Mr insulin receptor precursor, cleavage of the Arg‐Lys‐Arg‐Arg sequence at position 707 of the IGF‐I receptor precursor will generate alpha (80,423 Mr) and beta (70,866 Mr) subunits, which compare with approximately 135,000 Mr (alpha) and 90,000 Mr (beta) fully glycosylated subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.