The world's wealth of plant genetic resources has much value for world food security, but these resources are under considerable threat. Crop improvement, particularly under climate change, depends on the genetic diversity of our plant genetic resources, which are arguably inadequately conserved and poorly used. There is wide recognition that the Convention on Biological Diversity's 2010 targets to reduce the loss of biodiversity have not been met. Biodiversity is at risk from multiple threats, including climate change, and the genetic diversity contained within plant genetic resources, particularly of species that are wild relatives of our crops, faces similar threats but is essential to our ability to respond to the new stresses in the agricultural environment resulting from climate change. It is important to consider the genetic value of these crop wild relatives, how they may be conserved, and what new technologies can be implemented to enhance their use.
Crop wild relatives are an important socio-economic resource that is currently being eroded or even extinguished through careless human activities. If the Conference of the Parties (COP) to the CBD 2010 Biodiversity Target of achieving a significant reduction in the current rate of loss is to be achieved, we must first define what crop wild relatives are and how their conservation might be prioritised. A definition of a crop wild relative is proposed and illustrated in the light of previous Gene Pool concept theory. Where crossing and genetic diversity information is unavailable, the Taxon Group concept is introduced to assist recognition of the degree of crop wild relative relatedness by using the existing taxonomic hierarchy.
Growing concern over the potentially devastating impacts of climate change on biodiversity and food security, considered together with the growing world population, means that taking action to conserve crop wild relative (CWR) diversity is no longer an option-it is an urgent priority. Grop wild relatives are species closely related to crops, including their progenitors, which have the potential to contribute beneficial traits for crop improvement, such as biotic and abiotic resistances, leading to improved yield and stability. Having already made major contributions to crop improvement in the 20th century, GWRarerecognizedasacritical resource to sustain global food security; therefore, their systematic conservation is imperative. However, extending their conservation and promoting more systematic exploitation is hindered by a lack of understanding of their current and potential value, their diversity, and practically how they might be conserved. Therefore, the aim of this paper is to (i) demonstrate the current and potential use of GWR in crop improvement, (ii) estimate how many GWR species exist and how many are a global priority for active conservation, and (iii) describe how a global network for the in situ conservation of GWR might be established that could help to underpin future food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.