This dataset contains anonymised human lung computed tomography (CT) scans with COVID-19 related findings, as well as without such findings. A small subset of studies has been annotated with binary pixel masks depicting regions of interests (ground-glass opacifications and consolidations). CT scans were obtained between 1st of March, 2020 and 25th of April, 2020, and provided by municipal hospitals in Moscow, Russia. Permanent link: https://mosmed.ai/datasets/covid19_1110. This dataset is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License.
We report the results of a survey conducted among ESR members in November and December 2018, asking for expectations about artificial intelligence (AI) in 5–10 years. Of 24,000 ESR members contacted, 675 (2.8%) completed the survey, 454 males (67%), 555 (82%) working at academic/public hospitals. AI impact was mostly expected (≥ 30% of responders) on breast, oncologic, thoracic, and neuro imaging, mainly involving mammography, computed tomography, and magnetic resonance. Responders foresee AI impact on: job opportunities (375/675, 56%), 218/375 (58%) expecting increase, 157/375 (42%) reduction; reporting workload (504/675, 75%), 256/504 (51%) expecting reduction, 248/504 (49%) increase; radiologist’s profile, becoming more clinical (364/675, 54%) and more subspecialised (283/675, 42%). For 374/675 responders (55%) AI-only reports would be not accepted by patients, for 79/675 (12%) accepted, for 222/675 (33%) it is too early to answer. For 275/675 responders (41%) AI will make the radiologist-patient relation more interactive, for 140/675 (21%) more impersonal, for 259/675 (38%) unchanged. If AI allows time saving, radiologists should interact more with clinicians (437/675, 65%) and/or patients (322/675, 48%). For all responders, involvement in AI-projects is welcome, with different roles: supervision (434/675, 64%), task definition (359/675, 53%), image labelling (197/675, 29%). Of 675 responders, 321 (48%) do not currently use AI, 138 (20%) use AI, 205 (30%) are planning to do it. According to 277/675 responders (41%), radiologists will take responsibility for AI outcome, while 277/675 (41%) suggest shared responsibility with other professionals. To summarise, responders showed a general favourable attitude towards AI.
on behalf of the European Society of Radiology (ESR) and the European Respiratory Society (ERS) @ERSpublicationsThe ESR and ERS agree that Europe's healthcare systems need to allow citizens to benefit from organised pathways to early diagnosis and reduction of mortality of lung cancer. Now is the time to set up and implement large-scale programmes.
With the ongoing COVID-19 pandemic decreasing availability of polymerase chain reaction with reverse transcription and the snowballing growth of medical imaging, especially the number of chest computed tomography (CT) scans being performed, methods to augment and automate the image analysis, increasing productivity and minimizing human error are of particular importance. The creation of high-quality datasets is essential for the development and validation of artificial intelligence algorithms. Such technologies have sufficient accuracy in diagnosing COVID-19 in medical imaging. The presented large-scale dataset contains anonymized human CT scans with COVID-19 features as well as normal studies. Some studies were tagged by radiologists using binary pixel masks of regions of interest (e.g., characteristic areas of consolidation and ground-glass opacities). CT data were acquired between March 1, 2020, and April 25, 2020, and provided by municipal hospitals in Moscow, Russia. The presented dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0).
In Europe, lung cancer ranks third among the most common cancers, remaining the biggest killer. Since the publication of the first European Society of Radiology and European Respiratory Society joint white paper on lung cancer screening (LCS) in 2015, many new findings have been published and discussions have increased considerably. Thus, this updated expert opinion represents a narrative, non-systematic review of the evidence from LCS trials and description of the current practice of LCS as well as aspects that have not received adequate attention until now. Reaching out to the potential participants (persons at high risk), optimal communication and shared decision-making will be key starting points. Furthermore, standards for infrastructure, pathways and quality assurance are pivotal, including promoting tobacco cessation, benefits and harms, overdiagnosis, quality, minimum radiation exposure, definition of management of positive screen results and incidental findings linked to respective actions as well as cost-effectiveness. This requires a multidisciplinary team with experts from pulmonology and radiology as well as thoracic oncologists, thoracic surgeons, pathologists, family doctors, patient representatives and others. The ESR and ERS agree that Europe's health systems need to adapt to allow citizens to benefit from organised pathways, rather than unsupervised initiatives, to allow early diagnosis of lung cancer and reduce the mortality rate. Now is the time to set up and conduct demonstration programmes focusing, among other points, on methodology, standardisation, tobacco cessation, education on healthy lifestyle, cost-effectiveness and a central registry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.