Tissue-engineered skin equivalents based on primary isolated fibroblasts and keratinocytes have been shown to be useful tools for functional in vitro tests, including toxicological screenings and drug development. In this study, a commercially available squamous cell carcinoma (SCC) cell line SCC-25 was introduced into epidermal and full-thickness skin equivalents to generate human-based disease-in-a-dish model systems. Interestingly, when cultured either in the epidermis or dermis of full-thickness skin equivalents, SCC-25 cells formed hyper-keratinized tumor cell nests, a phenomenon that is frequently seen in the skin of patients afflicted with SCC. Raman spectroscopy was employed for the label-free cell phenotype characterization within the engineered skin equivalents and revealed the presence of differential protein patterns in keratinocytes and SCC-25 cells. To conclude, the here presented SSC disease-in-a-dish approaches offer the unique opportunity to model SSC in human skin in vitro, which will allow further insight into SSC disease progression, and the development of therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.