The thermoluminescence (TL) characteristics of sodium chloride (NaCl), known as common salt, used for cooking purposes (iodised salt), have been studied in the present paper considering its usage as an 'accidental dosemeter' in the case of a nuclear fallout. TL characteristics of common salt have been examined under excitation with a beta dose of 20 Gy from a 90Sr beta source. The salt specimens are used in the form of discs. The average salt grain that sticks to the disc is measured to be approximately 1 mg. The TL of the beta irradiated salt is recorded in the conventional TL apparatus. Initially three peaks were observed at 133, 205 and 238 degrees C. All three peaks are well resolved, having maximum intensity at 238 degrees C. The material under investigation, i.e. 'common salt' possesses many good dosimetric properties and therefore this can be considered as an 'accidental dosemeter'.
The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A (90)Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO(4): Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.