BackgroundDysregulation of hedgehog pathway is observed in numerous cancers. Relevance of hedgehog pathway genes in cancer cohort and inhibition of its downstream effector (GLI1) towards metastasis in cell lines are explored in the study.MethodOne hundred fifty fresh tumours of breast cancer patients were collected for the study. Based on differential expression, panel of 6 key regulators of the pathway (SHH, DHH, IHH, PTCH1, SMO and GLI1) in microarray datasets were identified. Expressional profiles of aforementioned genes were later correlated with clinico-pathological parameters in Pakistani breast cancer cohort at transcript and protein levels. In addition, GLI1 over expressing breast cancer cell lines (MDA-MB-231 and MCF-7) were treated with GANT61 to explore its probable effects on metastasis.ResultSHH, DHH, PTCH1 and GLI1 were significantly over-expressed in tumours as compared with respective normal mammary tissues. A significant correlation of SHH, DHH and GLI1 expression with advanced tumour size, stages, grades, nodal involvement and distant metastasis was observed (p < 0.05). Over-expression of SHH, DHH and GLI1 was significantly related with patients having early onset and pre-menopausal status. Of note, hedgehog pathway was frequently up regulated in luminal B and triple negative breast cancer affected women. In addition, positive correlations were observed among aforementioned members of pathway and Ki67 (r-value: 0.63–0.78) emphasizing their role towards disease progression. Exposure of GANT61 (inhibitor for GLI1) significantly restricted cell proliferation, reduced cell motility and invasion.ConclusionRole of activated hedgehog pathway in breast cancer metastasis provides a novel target for cancer therapy against aggressive cancer subtypes.Electronic supplementary materialThe online version of this article (10.1186/s12964-017-0213-y) contains supplementary material, which is available to authorized users.
Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERβ) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.
The frequency of inherited bilateral autosomal recessive non-syndromic hearing loss (ARNSHL) in Pakistan is 1.6/1000 individuals. More than 50% of the families carry mutations in GJB2 while mutations in MYO15A account for about 5% of recessive deafness. In the present study a cohort of 30 ARNSHL families was initially screened for mutations in GJB2 and MYO15A. Homozygosity mapping was performed by employing whole genome single nucleotide polymorphism (SNP) genotyping in the families that did not carry mutations in GJB2 or MYO15A. Mutation analysis was performed for the known ARNSHL genes present in the homozygous regions to determine the causative mutations. This allowed the identification of a causative mutation in all the 30 families including 9 novel mutations, which were identified in 9 different families (GJB2 (c.598G>A, p.Gly200Arg); MYO15A (c.9948G>A, p.Gln3316Gln; c.3866+1G>A; c.8767C>T, p.Arg2923* and c.8222T>C, p.Phe2741Ser), TMC1 (c.362+18A>G), BSND (c.97G>C, p.Val33Leu), TMPRSS3 (c.726C>G, p.Cys242Trp) and MSRB3 (c.20T>G, p.Leu7Arg)). Furthermore, 12 recurrent mutations were detected in 21 other families. The 21 identified mutations included 10 (48%) missense changes, 4 (19%) nonsense mutations, 3 (14%) intronic mutations, 2 (9%) splice site mutations and 2 (9%) frameshift mutations. GJB2 accounted for 53% of the families, while mutations in MYO15A were the second most frequent (13%) cause of ARNSHL in these 30 families. The identification of novel as well as recurrent mutations in the present study increases the spectrum of mutations in known deafness genes which could lead to the identification of novel founder mutations and population specific mutated deafness genes causative of ARNSHL. These results provide detailed genetic information that has potential diagnostic implication in the establishment of cost-efficient allele-specific analysis of frequently occurring variants in combination with other reported mutations in Pakistani populations.
Adenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease. The aim of this study was to determine the potential role of ADARs in congenital heart disease. Strong downregulation of ADAR2 and increase in ADAR1 expression was observed in blood samples from congenital heart disease (CHD) patients. The decrease in expression of ADAR2 was in line with its downregulation in ventricular tissues of dilated cardiomyopathy patients. To further decipher the plausible regulatory pathway of ADAR2 with respect to heart physiology, miRNA profiling of ADAR2 was performed on tissues from ADAR2-/- mouse hearts. Downregulation of miRNAs (miR-29b, miR-405, and miR-19) associated with cardiomyopathy and cardiac fibrosis was observed. Moreover, the upregulation of miR-29b targets COL1A2 and IGF1, indicated that ADAR2 might be involved in cardiac myopathy. The ADAR2 target vascular development associated protein-coding gene filamin B (FLNB) was selected. The editing levels of FLNB were dramatically reduced in ADAR2 -/- mice; however, no observable changes in FLNB expression were noted in ADAR2 -/- mice compared to wild-type mice. This study proposes that sufficient ADAR2 enzyme activity might play a vital role in preventing cardiovascular defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.