The spatiotemporal patterns of ground level ozone (O3) concentrations in the New York City (NYC) metropolitan region for the 2007–2017 period were examined conjointly with local emissions of O3 precursors and the frequency of wildfires. Daily 8-h and 1-h O3 and nitric oxide (NO) concentrations were retrieved from the US Environmental Protection Agency (EPA) Air Data. Annual emission inventories for 2008 and 2017 were acquired from EPA National Emissions Inventory (NEI). The number and area burnt by natural and human-ignited wildfires were acquired from the National Interagency Fire Center (NIFC). The highest daily 8-h max O3 concentrations varied from 90 to 111 parts per billion volume (ppbv) with the highest concentrations measured perimetrically to NYC urban agglomeration. The monthly 8-h max O3 levels have been declining for most of the peri-urban sites but increasing (from +0.18 to +1.39 ppbv/year) for sites within the urban agglomeration. Slightly higher O3 concentrations were measured during weekend than those measured during the weekdays in urban sites probably due to reduced O3 titration by NO. Significant reductions of locally emitted anthropogenic nitrogen oxides (NOx) and volatile organic compounds (VOCs) may have triggered the transition from VOC-limited to NOX-limited conditions, with downwind VOCs sources being critically important. Strong correlations between the monthly 8-h max O3 concentrations and wildfires in Eastern US were computed. More and destructive wildfires in the region were ignited by lightning for years with moderate and strong La Niña conditions. These findings indicate that climate change may counterbalance current and future gains on O3 precursor’s reductions by amending the VOCs-to-NOx balance.
Declining ambient PM2.5 concentrations have been attributed to fuel consumption standards and emission controls of secondary sulfate and nitrate aerosol precursors from transportation and industrial sectors. As a result, the relative contribution of PM2.5 sources is modified, shifting PM2.5 trends, physicochemical characteristics, and health effects. Carbonaceous fine aerosol account for most of PM2.5 mass in the US. This study aims to examine the spatiotemporal trends of ambient PM2.5 levels and their association with primary PM2.5 emissions from anthropogenic activities and fires in the New York/New Jersey metropolitan statistical area (NYNJ MSA) airshed. PM2.5 mass concentrations were obtained from the U.S. Environmental Protection Agency (USEPA) Air Data. Ambient PM2.5 mass levels declined on average by 47%, at a rate of −0.61 ± 0.01 μg/m3/year in urban locations and −0.25 ± 0.01 μg/m3/year in upwind and peri-urban locations over the 2007 to 2017 period. The strong spatial gradient in 2007, with high PM2.5 levels in urban locations and low PM2.5 levels in peri-urban locations gradually weakened by 2013 but re-appeared in 2017. Over the same period, primary PM2.5 emissions declined by 52% from transportation, 15% from industrial, and 8% from other anthropogenic sources corresponding to a decrease of 0.8, 0.9, and 0.6 μg/m3 on ambient PM2.5 mass, respectively. Wildland and prescribed fires emissions increased more than 3 times adding 0.8 μg/m3 to ambient PM2.5 mass. These results indicate that (i) fire emissions may impede the effectiveness of existing policies to improve air quality and (ii) the chemical content of PM2.5 may be changing to an evolving mixture of aromatic and oxygenated organic species with differential toxicological responses as compared to inert ammonium sulfate and nitrate salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.