A Cu–10Fe–3Ag alloy was produced by means of induction melting. The effects of aging processes on microhardness and conductivity of Cu–10Fe–3Ag alloy were studied. The microstructure of the alloy was examined using transmission electron microscope (TEM). The results show that: presence of Ag can accelerate γ-Fe precipitation from in the Cu matrix, but also reduces the thermal stability of Fe fibers. As the annealing temperature increasing, the microhardness and conductivity of Cu-10Fe-3Ag in-situ composite increase at first and then decrease. Annealed at 475 for 6h, the alloy has an excellent combination of microhardness and conductivity, the microhardness and conductivity reach 209HV and 58.4% IACS, respectively. The Fractures of the alloy are all ductile rupture and the dimples are smaller with the annealing temperature increasing.
A deformation-processed Cu-10Fe-3Ag in situ composite was made by consumable arc melting and casting followed by extensive deformation. A superior combination of mechanical strength and electrical/thermal conductivity was achieved with the composite since Fe filaments existed in the copper matrix. The effects of sliding speed and electrical current on sliding wear behavior and microstructure of the composite were investigated on wear tester. Worn surfaces of the Cu-10Fe-3Ag in situ composite were analyzed by scanning electron microscopy (SEM). Within the studied range of electrical current and sliding speed, the wear rate increased with the increasing electrical current and the sliding speed. Compared with Cu-10Fe in situ composite under the same conditions, the Cu-10Fe-3Ag in situ composite had much better wear resistance. Adhesive wear, abrasive wear and arc erosion were the dominant mechanisms during the electrical sliding processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.