2003-2006 (12 locations in 2003 and 18 locations in 2004-2006). The amount of rainfall along with air temperature and humidity were also measured. The meteoric water line developed for India using isotopic data of precipitation samples, namely, d 2 H = 7.93 (±0.06) × d18 O + 9.94(±0.51) (n = 272, r 2 = 0.98), differs slightly from the global meteoric water line. Regional meteoric water lines were developed for several Indian regions (i.e., northern and southern regions of India, western Himalayas) and found to be different from each other (southern Indian meteoric water line, slope is 7.82, intercept or D excess is 10.23; northern Indian meteoric water line, slope is 8.15, intercept is 9.55) which is attributed to differences in their geographic and meteorological conditions and their associated atmospheric processes (i.e., ambient temperature, humidity, organ, and source of vapor masses). The local meteoric water lines developed for a number of locations show wide variations in the slope and intercept. These variations are due to different vapor sources such as the northeast (NE) monsoon that originates in the Bay of Bengal; the southwest monsoon (SW) that originates in the Arabian Sea; a mixture of NE and SW monsoons; retreat of NE and SW monsoons and western disturbances that originate in the Mediterranean Sea. The altitude effect in the isotopic composition of precipitation estimated for western Himalayan region also varies from month to month.
The Indo-Gangetic foreland basin has some of the highest rates of groundwater extraction in the world, focused in the states of Punjab and Haryana in northwest India. Any assessment of the effects of extraction on groundwater variation requires understanding of the geometry and sedimentary architecture of the alluvial aquifers, which in turn are set by their geomorphic and depositional setting. To assess the overall architecture of the aquifer system, we used satellite imagery and digital elevation models to map the geomorphology of the Sutlej and Yamuna fan systems, while aquifer geometry was assessed using 243 wells that extend to ∼200 m depth. Aquifers formed by sandy channel bodies in the subsurface of the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow heavy-tailed thickness distributions. These distributions, along with evidence of persistence in aquifer fractions as determined from compensation analysis, indicate persistent reoccupation of channel positions and suggest that the major aquifers consist of stacked, multistoried channel bodies. The percentage of aquifer material in individual boreholes decreases down fan, although the exponent on the aquifer body thickness distribution remains similar, indicating that the total number of aquifer bodies decreases down fan but that individual bodies do not thin appreciably, particularly on the Yamuna fan. The interfan area and the fan marginal zone have thinner aquifers and a lower proportion of aquifer material, even in proximal locations. We conclude that geomorphic setting provides a first-order control on the thickness, geometry, and stacking pattern of aquifer bodies across this critical region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.