In this work, ø 3 mm × 70 mm (Zr63.36Cu14.52Ni10.12Al12)1−xYx (x = 0, 0.2, 0.5, 0.6, 1, 1.2, 1.5, 2, and 3 at.%) rod-shaped bulk metallic glasses (BMGs) were fabricated using the copper mold suction casting method and the effects of the addition of Y on the properties of Zr-based BMGs were studied. The results indicate that the properties of Zr-based BMGs can be enormously improved by the addition of an appropriate amount of the rare earth Y element. The values of the supercooled liquid region width (ΔTx), glass-forming ability (GFA) parameter (γ), thermoplastic forming (TPF) ability parameter (S), and plastic strain (εp) for the alloy with x = 0.6 reach 115 K, 0.390, 0.228, and 16.5 %, respectively, and are much higher than those of the alloy with x = 0, indicating that the alloy with x = 0.6 exhibits excellent thermal stability, glass-forming ability, thermoplastic forming ability, and compressive plasticity. It was also found that the alloy with x = 1.5 has the minimum corrosion current (icorr = 1.12 × 10 −9 A cm −2 ), showing excellent corrosion resistance. Overall, the alloy with the Y content of x = 0.6 demonstrates excellent thermal stability, GFA, TPF ability, mechanical properties, and corrosion resistance, thus displaying improved comprehensive properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.