The role of oestradiol in the control of uterine responsiveness to oxytocin was investigated by measuring oxytocin-induced phospholipase C activation in [3H]inositol-labelled cultured human myometrial cells. Addition of oestradiol to steroid-free culture medium (10% (v/v) fetal calf serum treated with dextran-coated charcoal in phenol red-free medium) enhanced formation of inositol phosphates and this effect was completely abolished by the anti-oestrogen tamoxifen. The inhibitory effect of tamoxifen on oxytocin-induced phospholipase C activation occurred in both steroid-free and complete culture medium; it was time- and concentration-dependent and was only partly reversed by oestradiol. When phospholipase C was activated with PGF2 alpha or fluoroaluminate instead of oxytocin, oestradiol and tamoxifen had the same stimulatory and inhibitory effects, respectively. The inhibitory effect of tamoxifen could not be prevented by treating the cells with pertussis toxin. Moreover, the effect of tamoxifen was not mediated by inhibition of protein kinase C, since the use of staurosporine (a protein kinase inhibitor) resulted in potentiation of phospholipase C activation by oxytocin. Both oestradiol and tamoxifen increased [3H]inositol incorporation into cellular lipids and cell proliferation. These results suggest that oestradiol enhances myometrial responsiveness to oxytocin and other agonists by facilitating phospholipase C activation at a post-receptor level. This effect is antagonized by tamoxifen; however, tamoxifen also has oestrogen-independent inhibitory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.