Binary and multiple stellar systems are numerous in our solar neighborhood with 80 per cent of the solar-type stars being members of systems with high order multiplicity. The Contact Binaries Towards Merging (CoBiToM) Project is a programme that focuses on contact binaries and multiple stellar systems, as a key for understanding stellar nature. The goal is to investigate stellar coalescence and merging processes, as the final state of stellar evolution of low-mass contact binary systems. Obtaining observational data of approximately 100 eclipsing binaries and multiple systems and more than 400 archival systems, the programme aspires to give insights for their physical and orbital parameters and their temporal variations, e.g. the orbital period modulation, spot activity etc. Gravitational phenomena in multiple-star environments will be linked with stellar evolution. A comprehensive analysis will be conducted, in order to investigate the possibility of contact binaries to host planets, as well as the link between inflated hot Jupiters and stellar mergers. The innovation of CoBiToM Project is based on a multi-method approach and a detailed investigation, that will shed light for the first time on the origin of stellar mergers and rapidly rotating stars. In this work we describe the scientific rationale, the observing facilities to be used and the methods that will be followed to achieve the goals of CoBiToM Project and we present the first results as an example of the current research on evolution of contact binary systems.
Ultra-short orbital period contact binaries (Porb < 0.26 d) host some of the smallest and least massive stars. These systems are faint and rare, and it is believed that they have reached a contact configuration after several Gyrs of evolution via angular momentum loss, mass transfer and mass loss through stellar wind processes. This study is conducted in the frame of Contact Binaries Towards Merging (CoBiToM) Project and presents the results from light curve and orbital analysis of 30 ultra-short orbital period contact binaries, with the aim to investigate the possibility of them being red nova progenitors, eventually producing merger events. Approximately half of the systems exhibit orbital period modulations, as a result of mass transfer or mass loss processes. Although they are in contact, their fill-out factor is low (less than 30 per cent), while their mass ratio is larger than the one in longer period contact binaries. The present study investigates the orbital stability of these systems and examines their physical and orbital parameters in comparison to those of the entire sample of known and well-studied contact binaries, based on combined spectroscopic and photometric analysis. It is found that ultra-short orbital period contact binaries have very stable orbits, while very often additional components are gravitationally bound in wide orbits around the central binary system. We confirmed that the evolution of such systems is very slow, which explains why the components of ultra-short orbital period systems are still Main Sequence stars after several Gyrs of evolution.
We report the discovery of the relatively bright (V = 10.5 mag), doubly eclipsing 2+2 quadruple system CzeV1731. This is the third known system of its kind, in which the masses are determined for all four stars and both the inner and outer orbits are characterized. The inner eclipsing binaries are well-detached systems moving on circular orbits: pair A with period PA = 4.10843 d and pair B with PB = 4.67552 d. The inner binaries contain very similar components (q ≈ 1.0), making the whole system a so-called double twin. The stars in pair B have slightly larger luminosities and masses and pair A shows deeper eclipses. All four components are main-sequence stars of F/G spectral type. The mutual orbit of the two pairs around the system barycenter has a period of about 34 yr and an eccentricity of about 0.38. However, further observations are needed to reveal the overall architecture of the whole system, including the mutual inclinations of all orbits. This is a promising target for interferometry to detect the double at about 59 mas and ΔMbol < 1 mag.
<p><strong>Abstract</strong></p> <p><em>Planets In Your Hand</em> is a science education program, that consists of a portable interactive exhibition of eight planetary surface models. The program offers the visitors a tactile experience and the opportunity to understand the diversity of the planetary surfaces in our Solar System. The planetary models have been exhibited in a series of public events since their construction in 2018 and have been visited by a wide range of audience, including visually impaired people. The project is still running, while Planets In Your Hand team is working on improvements, that foresee to a greater social and educational impact. The current work summarizes the social impact of the program through the visitors&#8217; questionnaires, comments and impressions.</p> <p><strong>1. Introduction</strong></p> <p><em>Planets In Your Hand (PIYH)</em> is a science communication project, initiated at the Department of Physics of National and Kapodistrian University of Athens (<em>NKUA</em>). Its purpose is to reach individuals, that do not have any previous interaction with the field, trigger their interest to interactively participate in scientific activities and public events and eventually bring them closer to science and contribute in lifelong learning. This is mainly attempted through a visual and tangible representation of the planetary environments and morphologies in our Solar System (Kefala et al., 2018), that also benefits visually impaired people.</p> <p>The success of <em>PIYH</em> project is established by the <em>Science Communication Award (E&#928;I<sup>2</sup> Award 2019)</em> in the category of <em>&#8220;Awareness Activities and Campaigns&#8221;</em>.</p> <p><em>PIYH</em> program is a non-formal learning experience, the importance of which is widely accepted and supported by the National Science Education Standards (National Research Council, 1996). The way science communication is organized and planned as well as the visitor&#8217;s intrinsic motivation for learning (Eshach 2007) declares this an indisputable fact.</p> <p><strong>2. Data Collection</strong></p> <p>In order to evaluate the social impact of the <em>PIYH</em> project, questionnaires were filled out by the visitors after their conceivable journey to our Solar System. Multiple-choice questions and a comment section were included. The goal was to examine whether the exhibition provides an overall positive experience to the visitors and to find possible ways to improve its presentation.</p> <p>The planetary models have been exhibited in a series of public events (Fig. 1) since the beginning of the program (Palafouta et al., 2019). This research was conducted during two major events where <em>PIYH</em> was presented. These are the opening of the exhibition and the Athens Science Festival 2019.</p> <p>Oral impressions and evaluations for every event were also made directly by the members of the <em>PIYH</em> team that presented the planetary surfaces. They were based on the reactions and the comments of the visitors and were really helpful. <em>PIYH</em> program is a non-formal learning experience, the importance of which is widely accepted and supported by the National Science Education Standards (National Research Council, 1996). The way science communication is organized and planned as well as the visitor&#8217;s intrinsic motivation for learning (Eshach 2007) declares this an indisputable fact.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAHzCAIAAABZsXhlAAAACXBIWXMAAC4jAAAuIwF4pT92AAAKT2lDQ1BQaG90b3Nob3AgSUNDIHByb2ZpbGUAAHjanVNnVFPpFj333vRCS4iAlEtvUhUIIFJCi4AUkSYqIQkQSoghodkVUcERRUUEG8igiAOOjoCMFVEsDIoK2AfkIaKOg6OIisr74Xuja9a89+bN/rXXPues852zzwfACAyWSDNRNYAMqUIeEeCDx8TG4eQuQIEKJHAAEAizZCFz/SMBAPh+PDwrIsAHvgABeNMLCADATZvAMByH/w/qQplcAYCEAcB0kThLCIAUAEB6jkKmAEBGAYCdmCZTAKAEAGDLY2LjAFAtAGAnf+bTAICd+Jl7AQBblCEVAaCRACATZYhEAGg7AKzPVopFAFgwABRmS8Q5ANgtADBJV2ZIALC3AMDOEAuyAAgMADBRiIUpAAR7AGDIIyN4AISZABRG8lc88SuuEOcqAAB4mbI8uSQ5RYFbCC1xB1dXLh4ozkkXKxQ2YQJhmkAuwnmZGTKBNA/g88wAAKCRFRHgg/P9eM4Ors7ONo62Dl8t6r8G/yJiYuP+5c+rcEAAAOF0ftH+LC+zGoA7BoBt/qIl7gRoXgugdfeLZrIPQLUAoOnaV/Nw+H48PEWhkLnZ2eXk5NhKxEJbYcpXff5nwl/AV/1s+X48/Pf14L7iJIEyXYFHBPjgwsz0TKUcz5IJhGLc5o9H/LcL//wd0yLESWK5WCoU41EScY5EmozzMqUiiUKSKcUl0v9k4t8s+wM+3zUAsGo+AXuRLahdYwP2SycQWHTA4vcAAPK7b8HUKAgDgGiD4c93/+8//UegJQCAZkmScQAAXkQkLlTKsz/HCAAARKCBKrBBG/TBGCzABhzBBdzBC/xgNoRCJMTCQhBCCmSAHHJgKayCQiiGzbAdKmAv1EAdNMBRaIaTcA4uwlW4Dj1wD/phCJ7BKLyBCQRByAgTYSHaiAFiilgjjggXmYX4IcFIBBKLJCDJiBRRIkuRNUgxUopUIFVIHfI9cgI5h1xGupE7yAAygvyGvEcxlIGyUT3UDLVDuag3GoRGogvQZHQxmo8WoJvQcrQaPYw2oefQq2gP2o8+Q8cwwOgYBzPEbDAuxsNCsTgsCZNjy7EirAyrxhqwVqwDu4n1Y8+xdwQSgUXACTYEd0IgYR5BSFhMWE7YSKggHCQ0EdoJNwkDhFHCJyKTqEu0JroR+cQYYjIxh1hILCPWEo8TLxB7iEPENyQSiUMyJ7mQAkmxpFTSEtJG0m5SI+ksqZs0SBojk8naZGuyBzmULCAryIXkneTD5DPkG+Qh8lsKnWJAcaT4U+IoUspqShnlEOU05QZlmDJBVaOaUt2ooVQRNY9aQq2htlKvUYeoEzR1mjnNgxZJS6WtopXTGmgXaPdpr+h0uhHdlR5Ol9BX0svpR+iX6AP0dwwNhhWDx4hnKBmbGAcYZxl3GK+YTKYZ04sZx1QwNzHrmOeZD5lvVVgqtip8FZHKCpVKlSaVGyovVKmqpqreqgtV81XLVI+pXlN9rkZVM1PjqQnUlqtVqp1Q61MbU2epO6iHqmeob1Q/pH5Z/YkGWcNMw09DpFGgsV/jvMYgC2MZs3gsIWsNq4Z1gTXEJrHN2Xx2KruY/R27iz2qqaE5QzNKM1ezUvOUZj8H45hx+Jx0TgnnKKeX836K3hTvKeIpG6Y0TLkxZVxrqpaXllirSKtRq0frvTau7aedpr1Fu1n7gQ5Bx0onXCdHZ4/OBZ3nU9lT3acKpxZNPTr1ri6qa6UbobtEd79up+6Ynr5egJ5Mb6feeb3n+hx9L/1U/W36p/VHDFgGswwkBtsMzhg8xTVxbzwdL8fb8VFDXcNAQ6VhlWGX4YSRudE8o9VGjUYPjGnGXOMk423GbcajJgYmISZLTepN7ppSTbmmKaY7TDtMx83MzaLN1pk1mz0x1zLnm+eb15vft2BaeFostqi2uGVJsuRaplnutrxuhVo5WaVYVVpds0atna0l1rutu6cRp7lOk06rntZnw7Dxtsm2qbcZsOXYBtuutm22fWFnYhdnt8Wuw+6TvZN9un2N/T0HDYfZDqsdWh1+c7RyFDpWOt6azpzuP33F9JbpL2dYzxDP2DPjthPLKcRpnVOb00dnF2e5c4PziIuJS4LLLpc+Lpsbxt3IveRKdPVxXeF60vWdm7Obwu2o26/uNu5p7ofcn8w0nymeWTNz0MPIQ+BR5dE/C5+VMGvfrH5PQ0+BZ7XnIy9jL5FXrdewt6V3qvdh7xc+9j5yn+M+4zw33jLeWV/MN8C3yLfLT8Nvnl+F30N/I/9k/3r/0QCngCUBZwOJgUGBWwL7+Hp8Ib+OPzrbZfay2e1BjKC5QRVBj4KtguXBrSFoyOyQrSH355jOkc5pDoVQfujW0Adh5mGLw34MJ4WHhVeGP45wiFga0TGXNXfR3ENz30T6RJZE3ptnMU85ry1KNSo+qi5qPNo3ujS6P8YuZlnM1VidWElsSxw5LiquNm5svt/87fOH4p3iC+N7F5gvyF1weaHOwvSFpxapLhIsOpZATIhOOJTwQRAqqBaMJfITdyWOCnnCHcJnIi/RNtGI2ENcKh5O8kgqTXqS7JG8NXkkxTOlLOW5hCepkLxMDUzdmzqeFpp2IG0yPTq9MYOSkZBxQqohTZO2Z+pn5mZ2y6xlhbL+xW6Lty8elQfJa7OQrAVZLQq2QqboVFoo1yoHsmdlV2a/zYnKOZarnivN7cyzytuQN5zvn//tEsIS4ZK2pYZLVy0dWOa9rGo5sjxxedsK4xUFK4ZWBqw8uIq2Km3VT6vtV5eufr0mek1rgV7ByoLBtQFr6wtVCuWFfevc1+1dT1gvWd+1YfqGnRs+FYmKrhTbF5cVf9go3HjlG4dvyr+Z3JS0qavEuWTPZtJm6ebeLZ5bDpaql+aXDm4N2dq0Dd9WtO319kXbL5fNKNu7g7ZDuaO/PLi8ZafJzs07P1SkVPRU+lQ27tLdtWHX+G7R7ht7vPY07NXbW7z3/T7JvttVAVVN1WbVZftJ+7P3P66Jqun4lvttXa1ObXHtxwPSA/0HIw6217nU1R3SPVRSj9Yr60cOxx++/p3vdy0NNg1VjZzG4iNwRHnk6fcJ3/ceDTradox7rOEH0x92HWcdL2pCmvKaRptTmvtbYlu6T8w+0dbq3nr8R9sfD5w0PFl5SvNUyWna6YLTk2fyz4ydlZ19fi753GDborZ752PO32oPb++6EHTh0kX/i+c7vDvOXPK4dPKy2+UTV7hXmq86X23qdOo8/pPTT8e7nLuarrlca7nuer21e2b36RueN87d9L158Rb/1tWeOT3dvfN6b/fF9/XfFt1+cif9zsu72Xcn7q28T7xf9EDtQdlD3YfVP1v+3Njv3H9qwHeg89HcR/cGhYPP/pH1jw9DBY+Zj8uGDYbrnjg+OTniP3L96fynQ89kzyaeF/6i/suuFxYvfvjV69fO0ZjRoZfyl5O/bXyl/erA6xmv28bCxh6+yXgzMV70VvvtwXfcdx3vo98PT+R8IH8o/2j5sfVT0Kf7kxmTk/8EA5jz/GMzLdsAAAAEZ0FNQQAAsY58+1GTAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYABJg/SURBVHjapP15tG1rVh+Gzd+c31p773PO7d59fbVUQVFQBYUAAZKFYtkECTWW1VmyFDcaiiI7HskYieJhj+ERO9FIhj0SNW7iSDYWlmQBQkKAEBRQBYiioICi+vbVe/X69vb3nnbvtb5v/vLH16y19zmvcJKnQu++e889Z++115rfnL/5a/BtH3jX9SV6I8nj0/j864frYWOmIiIiKrLvQ6cOQEUefuTq6uqlOMT16XBydHLrwfqRa1fXXX9KFwoggAoEgIig/CP110ohUH4tIkJCoQqSqqqqIlSoCASiqvkvioiq5m+Vv6x+ZzVTVVxe6aVODg/Pvvz5Z2XYfPP7vm6xv/fVr7w0DkO4/nAKPRSAmKmptdcEQFUppMgmpgcPNnfeuHN2dMQYISyve/4PRCjtJZGkM4Hy//s/AAQUEYqA5dcipOQXmH9M/YntH0JY/mT6Iz33Qhy7P6z9FThFBOWiIn9kCt3vbT+IqpIUitNTckBCCCeb8XBkTJ6Y8rXIf7FeGhFSylspf1D+m9h76Mrf+Dv/+R/5vn95vT5Lns7W4+HR8b0H9z/zmS/94H/3T37gX/22b/uuDzhCsLC3Wl4+WOytlsvVYm+5VOtCWKh1UDE1UTWFAop8S6gCs7eR7736spDfqoLll+Wl5j9kvvakzt/D9ic9/R7bvzn/z/IN8++yXoPzv2i/QREvnx1JERcICXcXp9NJcY/uMcYUx80wjsN4tl7fPz4+vH8UY/zNj/72T/3TD37gu7/5fd/6TYvVarlaXNrbv7K/f/nylctXLl05WK1We4vVYtn3IXRmZqYKBUK+OLL1f7P3Dcn3mZDt/czeMKV8oPVNYHpjIuL1Tzxf9frm6x3Bdt/m/08JEYi4TM9TfioBoZSX2l5judlYPrjZHZefEZSfARGi/RApDxTa+5g+xPx+6/cv74Tl/yUhlPLs86/+zR/8yVu37/y+3/ed737nW65ePqBI9HG92Rwdn2zGTYjRYzwb1pvN+sGd27/wj/75rWdfXCy6hTIIUWqFQJDLDpk/eQ5J7p9tzHTVd4ncJCepXVBTy/VNkDx5ctKTl78HoNw0zFdCrNZCIfOVYylLnih0Bmi5yhSqJlEXgXi5ZoSIKNqVc4q7iIMJZL7UhloMsfWITDc/IEKBW67pEIAQgUKQi7uoIp8NmP1Tvra+B831uBZ3kgBUg4EibqCBqVZFEabkC6FYvQQynQ3lFyJjTCcn40uv3Di6c59pUIgApIDETlWlbD2mnCp7fiXzWwfbBWDnjKj3aC629e5mroRTBSq34/Yl9XwSbFf2dsQQ+ekq32frSKhPY67s0zuaShlj8kGhdBEZUxrHESLLruvVzmQcYwRLTQchAMpNlR/ldgNAFQLQnRRVObx592/8F//tt37ju97x1idPNgJNUFPrNHRJEwxqQcRMVQxUJQJhwk6lE5iABhVIq+ICFdHSNrD+Xv6I2y/LVQWk3Jtst2N9qSj3yk6pE7Z30v6WlKcKIkItxQlbZwDrzxSyfqQ7d4HXS11eHwgiiUJFKYQnqgbQYFj0uki23iSzboyhT5A1jC4CNTPt+rDoumUIi9BZpxo0NztBLah1KlBRqKqVZ0tURIjztR0kRct9BwrB6WTeOftIopYuIUkIVMq9y3ILOqczoB5yyLW4lWlCrN2zKFWivIhcl1Efplz8OR3Nsydt/ri0g7Z9qmydTTl7yoEA4VZhr6cW6EIRVfrHP/brP/F3/66CH//wh3XRa7ewbqGdeBI6l8vu4UeuPfG2J9/+1icff+zy07/91MlLry6DdODCFCLuqdwyqFeKFJHo7intL0IwE5HoJISK5CmXZtC11knK1P1RWF424eKg0F0Fqph9Gu3niAiCIp+TBGBChYDK6R6oxwRRuw6BGKH5CRNG1QWcaDfNrDWGSv72kPw85D9i/YWoWq4QqkZhK+uz9nxelGVWlqdfkyJQLxXfk7s7KWn0JJDOTIO1H6eKPCJY0CHyldfv3Xr1xub0rNQjyUVzt3M7VyenvqX9kmi9hHztfj4X33lHOes7wHZr+tQeUy5uw/NNuXXP5xucInrx6+DWs10OCc1fTo9UhXjyGKOLBGhHuWRy+fJeisd3x6iUOqWV76Eo9VIhnSoUpkpBSj7GRPDy3uLVp5/79Kc+9a53vg1jVIUZTDWEToOpKdRU1FQ71QANJqYqCjVRpaopTFSh+cYQRf5jUUCE5ejP5b88vK0bRHu4t3+F3SsxVZKtQQmzvg+z47aUotb0zf5SOzy1dpK5rlE0Twuop6FA4KUXgIqaWehG2q37xx/8yMef+srzPgw3b96KQ0zJn3j40njvKN/KAaaiIiYiyUiqOF3oearLrw6K8vxpfuJKD5bvb7QzyYVQASAKC2IolVdLkyRp5Oi5LwdR73lCgFzftd53+Z7U6SGofYtyZ2yYXfmpoalzZK3iit1zV84Nsjtdk+Dc79X/0K1hjNPPLneD515BDceH649/6sscjwNE0qkfq5NjraHuPHJ/Q8MXF4u3vOMd7333O2589rMLS2OiiQNKp0Dz0S0QIk/CtUhClkEVWMcU3fPsSDK6K2lUWhlOQVdRkiQSvbb+s7rj5RCtzzzbeAVoyI+JIIFuMBMVSeWWrr15ufkAuoiI051CBcEYU9DpopfWqoEv2j5J1dylg+0L22RhwKLvkieFkpRWZ/OIVlp3naE90hpw09wpqlogjBSIl+7Zk4Fmiql5h6pCiGCbUZ59+uVbr90UJmh+f6WLKc8xa0/IeiS123oaUbnTG9eba15Z2WATYrunBzx3kpzV3Txm5lfBWZdRDgDUlgpCaj4MOME1+eW6bHWN+TH08vSUHwmICgAYROv/nBQv7x11SBmGca/v3nVlJQ/Wd8ekuZ7WDz2YirgKDnrdC9oFAzDGdDbiBJqEb33HwwZ+7hOf/IN/6PtgoT7LCBZMOroo1AsSp2aKUvElV/M81Qmg+ZbPVUcJKKAihCIfiuULpx5jmiWxW7HRWpF5lYdcdDa3I5bTH3IbqivtD7YKzDSJ5fpexk3mJrE0TnmqVijC63cP/9m/+NinPvXlZz//lS9/+rfT0X0A9EhSgP1L+489cj2YGcSFwfSg1/291UG/WHZmUDqSe0wppRQN6gYjJIkANJlBiA2Pc3EV9NZvRE4YHzw4u3H7wWYcb9y5f3hyGqzru+4bvv4t73/yUWCg8zxOuTVl1hZnjl6eA4K2/mg6QNtEtduK7BbpqTUF/r9FQrce2O3fY+6mQAN+4cMf/bkP/spBH7qCWGJ66QqFRvfj9TBsTt/46jN4/eUDiRAEqIqk6FPvRWbYWWpZZj2xoqdN8lhgV3VPFMlggNUZiqKihDshoHriNPHPADSVOmxxAmwFDBRJrL12bqTpBmvXlfn5yce9JylFJ4GJ4Fnyq0y1lZ5328zgaG4R8nMKzbPZ9EUhWN8Zk68WnXtGpiQES86NJ3eX2sXnJ0hVpSHvCjWYqqrAzNRUVChwF6ELPCUlLShMzRraTlW7dzh85csvHN+9Z1qfrjafTjcVEglCkZ/MGdixXXNl9ojPfoOt96n3bmnXHLX1JvMp0m4dynRoYLrxJ+QdFVzwGfTC2bhAEZ7v2FEPDhakH+XIRYCYqQL0RIpQ86hEEThNRMHNGD35wbJ7++XVeP/4LOU+mfWghSHsB1zutauLjR5qMi46i4bv+c73ft//8vfbYhk3x93eFYUI6ULAVVzcLfebUMIgEgil5qOH5cmvb7Y0uq1csPShSoGL2E55fbPKfu53dpruXUB93mNu44/O3ImXYsmCJ8/muak/mnpLzr9pF4ILfu6jn/3b//2Pffpf/Kqd3FmoXFWJCxlTFAMpFPGzk9dfPtu/dAliFuzypb3HHrn68NUry35PgyFYMJiAFKczJYESToQAInCJpUgnolHowjMOm9EpPHxw/NtfeOqjv/nZL3/mS2+89Mrt119njGenp2kcoALo6uGH/rf/p7/yn/57fzHJZoJstgrJHNHm16ykX7PyztCfN22v5x9WBSfnPygfxP9zfvT02mfPTQh48aXXfuKf/Fx3eO/KQjtKATfIRD9NHl3VZNHZXrc6Xo+S0p4MnhteEVJIl9zV0kkmF52gSwrFAXcfEyNJVdZGkiL0vIjZ2bEVvH6+C8q1Wmc3MlF6QghyoxEoTPl21yA67wLL8eqYFQeKk6TXm1lSHBWuYpwQlbYrLB1srsYF5SwtdP4AJJgugg0sfVvDlaBQh7SerWDxqpq7dNV8XJSSndeDlnHexLFjVCI6QOmCioXStCvA8MbtB09/6bn1yYlqLer1vbKU+TnQQZarMruHcondbj0mzHvW2ZCuUhfImH1FmYvJWSeI/CnPl6vlnNz+sOfNY50wLmxIMH938waqwD8wRW8SgqqqJ4wxNsRaXFSkB4KICCP9ZIh7fffW/eVLx2fj9s8Kig6iTqjQHQpT2esDFt2g/L7v//1/7E//qZv3j0K3TGwPKJO4iydPSZJIyOscQoG89CAk/89FQl3QtnO47XEJ1XxPZ5gSdQTmhHjO6ztnm5GvueyuEO1W6RAROvKjUm5wL51T2QhyfkZgZ7HRIH2WqkTKM6/c/qkPf/x/+sF/ePz05x/pqHvBRVJKcArVRZIzD7Xu6eTo6LVXbnzHd73vYK/f31+tDvaW3TKohdBL6DQEyzCWQZG6btmH1XGSYcCP/Nwv/dpvfDJATjfD6fHR7Rs3xrPNcm//3v3jZ5/6Ujq+2yVCaQYI9vJ+LhHA8Mr9//L//Ne+61ve88f/pX/5jMdwcU73rapAJRFMXkFi7oCHb1JYWWfKN4VA666DwJuusXZ+BC/qbb7GC5ifIgvVzXr8of/hx7/wa796fZE6QYAaoKpCDjEmoVI8eYrJzC53ZgEm4nA1y8e8i+QlYhK4V/hB1IXuLhRCEz0SVHMypgQYMrmD4kmcyU0U09svSDALsg1QywqqXLcM2WSU0uvDHgBQlKAIAVWzdj5qfaH5HHBhEkfpNyGiCqVTpTyOdXs1dUalKkut0LkfnLXuitynj61bFMAphUSTRxho27NaAVhEbcLlXUBo6Do1cTAmiAuA5CL0ECwpVNSCjRGvv3b/uaefGzfHZjOcTiYUtM7eGXkoEwOAHQaBzw7Rcq9gB0ys1BTWgzujcG19eW7r2ca3OujXwxWYNRicrYkufnh21q3b2FH5+wqYamdYBMvFHcE2ijEmSXRPJjCzDtBSZJGcZ2Pc67tH9xavnW6mb0gnhQ43bYegqqpZ6LtNHNe6tHB1tR+iR4mprDnpQUHBGKN4OaXKSolWuQw7C8/MMCn9eTu9thfa52d7nC8ZC5hKJ6KUOEj0rU56mzizVZjrpnD2JdpoHzxXxs8NAajAdDkUg9144+7f/Jt/91c+9BHcfe2hhfSqKgJIAga3NWTjXqZlCFTp/tQXnv6mD3zDN33Tew729lerfbXFekwvv/7g6Diu9vqHHrp8ZX8P8IeuXnn59Qe/9Mu/+PMf+sjdN974yqc/Px4fquYywbxpJV01LAwSgKB1GLLcl+SasAq2Pjn9z/+zv3Hlv37s27/5G/ZNBz9N7hAVxet3Dl+7e6gW3v74tUUARBbB8DXbdrZF3tYaA19jN3TuP////IfzM7tBoJHp7//oP/uFH/vH19JpZ6IwhYCiQogsTE0ZE08S1xRPycwSZSNEKa+AZiqGDImDM7m4iCRKZUS5sw3ogFNyy5+UZX1IuhWwQCFC9zZsthlQubtkUwHzHSICUikUhkw3YOaIZFhcMNsgCfKWGRCW11r6UBEVOqGEAmn2MNR6zvILtO1qe2QBzRsHQCSomeqY2Jl1IWxiTCQMSsnIeuHq6UQPQQbmFQYD8upRAHNBihAiH0spJQBmpmoR+pWnX3njpVeZNnN8lQW+3nq8uQW1QIjtCW4Gd8zJInm/VDtKm46N3AuXz8khc2Cy/mi0ep1fD3EO69lpUnZ7lt9h6cRGpxGY6kKlU3RW5jtT7dQOx1O6B2FQdKahrgszZhhd1jFeWy0G8u7pphzPQFc4h+LlpBcSASpJJPLlF193IVThJlL2bxCFBAJObJOMSAqIDBLPF6AQihghjgL6l93ArILjHJ9xe8LQXhYu+vkbdz72uWdfu3X7+3/P+77n6965QBpk9Bk8JxcNQ5pxF1SAs4LFwnMQ3Q79lBMGz7rGyX/UB+rRbbv/6iVLS9MFGExVJCacukDhoySHQ8RztcX6+OyrX3nh6A/EOw9uvnHj6aeee/GF51956blXTo/WCtm7vH/l6tXVYnHp0t6Lzzxz47nnOKwh7Ptutd+7e+kFZ9i3k/DMx834q0vd2pAuIouue+o3f+vf/MN/6v3f9d1/6E/+wF/+c3/isna3Tm79v/6Hf/bT//zn7t28tVgtvu6b3/P7/xff873f8+1vffz6tUt7EG5j9DwHf+WNoNQeiucA9vYMMJOj+CZVHl+TwrD9p3WNnfeH7ZOFLLrFj/6jn/4H/4//+tLRrT5o3cbkj9dFxACDdIAq4QiLfrno794/un82OAWCvrMAuHMTfZMY2/Ku0TBqi1132jNOBBN82lruXLG6AENt9rCzEWp91gzJQoCI0rV2c6GOwSpbnZCLKMvplC96fvBiJEkF08RoQv5M5oyXqQnG1to1U7XM6O4pjkH76Ln1c1YIp9JpCi5Tae9aiNoKFZLuMZZjjE4BoGTyJCqG0I9RvvilF2+88JKK54dxvs+Zz2jlBzay3A6kuH0bcQLN2ao4t8ZMFg7c+U3UbOtSV391t1MPnNa98hzYcr7TxOwl/Y7IZqOddJl6olSlwvYXIQ0RImplj+TOPMEplKLuTMKHVquTYXRyP1gX8r5bIulOcQ7JKWKK5WolYk9/8UvJN30XOsBEUkhd15mGjK+RKQsb2kJIy0qgboLmfGwRcAt0nx0MqBvMbc1A/Z2VLl5fn/3Ihz/+hc889aGf+dDtF56J69O/844nvv9f/2P/7p//47/nve/u4Cx8uYtP0Iw7XFjHtzGXC/6IW6Oet0p16dLBcm9xWXjV8gdhXWf5o1eRHhKpo7vnzgAq4LIPrz//+t/7O//k5u1792/f3Zw8GE9PQaoiijx4g4fQoGGMo9C7oOjURYTuiT5x9TG/zVpNIAtoP91UiuRUlfWdm7/50z/xsZ/76U//1if/5J/4k//kJ/75j/3g3w/jcQgmwhc++6lPfvAXfvV7v+frv/V93/O93/2v/J5vPwiWUsSsBzq36vBZ9+Olw5QqRFBkHYwIUirsjtoJqLzJI3nhDS87kNz23wBkEfp/+jO/+N/8tb++d+9G3+e9kVIoqdwSqU72qrK3WlxarULfdcFSHG+dbPLJOETXxJgYU2LTscyXEBmGr93DVj1gabpRwG90hpCxl6mqFOx2KqkVSGksyDwZ5KVtKDSKiuKa5b9UK0Q+KSg6gy8Lr4cigui5yUbM98tWPa8AzfZvVSpNqUqjJ1OlEIpMqVeFiaKy7ds2tf0tlAGjUCiEeXghIe6enAQzEcVTUgURnv7yszeee66yd7C9r3fZps/OgBU2EdZMwpLpunKOLr71VOOiQnwhUlC/xrdPBlbEZ/p2mH31dKxPuzvsnEk70M30R7UfCiqZ+pLvITMsO4vuKA1maTdimTk8D2gDPak5uQx2sOjyvmh036TkY3KR5O7uTgmb+La3Pvwn/swf+cqt9atv3M8SpPWwOTs9Gdfr9Zhp915byVxxxEkU2m1GwEqrTxEVZuquS6FJX1RG52y7iqJo//NffOk/+y/+h4//zAe7zZ1V8D0DlZvnv/rjf/2/+rkf+6f/+r/zZ/76f/hXLnV95M5CRXaQWWlriVL8/aKTIKOfW1KZekp7K/Fm9uUXb3zyN7541TL81RoXl3z4OrvgXYIL4IUdqKqnd+48fedurgMhJZTVVr56+VrFDAJztjfknHY+11cBAjgpzokGrGVcy8iAUADrFgsIfvLv/ODP/IMf9dEv6+CdCSDQoNwc3//4h3/xMx/5tR//oR/+w//Wn/1P/up/8PClkGIEL2hNKr5b+HGsYABdkkswI+1kPd66f7Q5WV/ZXx1cXu2vOpTlimMHHTv3aFHm/KDCXdhSLdULsOi6L3756b/1n/7nvPVy6E2kUWSQN4zOSZNifbe4fND1vUDun2xunmxifUyTZwlRJZtDsNPxzZj/rcObMYoqqJkyywZdJowUQMBJQMuXoFAfQMj0MzMvtYLxIbN1BEnoTgdK9dZ548h6mTzfO2VhpQBJj0k6LU+QFL7hHJ3ZYUkWTnLuxdVidOtD5kZnGAaq+711pg82G88jeiZ4ZAAo0/rEdWK+5TdPUVFISu6ZtC0Y4ghNL7108+UXXskvatrkbN0ZF4G2szXkNgDC1h1XrE3KudSGXU4clZ1STlyofdz+jwLkoBWHBtViztzYWuhmUYy0MXc2cmJrHViEJxIUfcXg8smheZmRj/NC52Ekx7yQJOjupFI3KYpzabYwpTC5t5VP/rWpLruuE71y9aF/+DOf+9X/60+c3r9rClUTJrpfuXZw9er+cPSgXbhSiFhlFXVXMT2R5SsL0JdrUr4T2xdgtgJpKt+VLX/wZz/yV/+jv7V59vNX+yQ9mJddIlDdM4yvvvjDf+tvv++db/k//vl/I8lw4ewzR8+22rEiDfG54oC84JN1zh5sOkUM4Vd++bfWb7x2OTA5oXlUctLpThcnFVx2oCChUOsMCk9LeKeagKMM7EKnXtG9jqJahJeYKyAwJwBOu5/Stpcnty3qOW2yPf+IRWcyrk0BWErinpeFZUdskvzw7j/+W//N8YPDv/Z/+T88erDyWXsxO1NYnt6MNXshHd24de/odLh1+8FTTz9769bt48P73/aBb/qW9379nTt+5drVtz75uJRuYHrKmhaVc3p9uw04lc75oU1MbKsf+fs/dv+5r15fhTEvfHJ/WPApdXre7wOKRW8Lo/j9w81XXrt/vBlFQPH5cK5AUBhKF5JYJ7WChstM2lT79oLWzbkCeXbR3A9ANUuA88V0ZlYOSPH8n/WduTBTnEMGc5IT7kIv2xyXOWZRx90sbPVa9cprSHG0RY+iXJAM4edN6LSynEwIoDKtWPN5sRlT7t0zqG9GhcbM4plY8brLACkzBAsmXvYDLslTFHdXYXLeu3303NMvwUdui4EuwK8hVfSxLXy5iEsxa4Da+ywyrHLVtlEYcBuBxbZ8cRe3nT0JwIWNJM5BRTNpDhvTAxNNm+2JMlUFVTMtU7XOw8gMq+2FgJCp1lmnm1kSeEp51W2m+TIsSANOIzNjN6gtVVdduPXiK7/1qS+eDNS2ZgMoOHqBr4CL5fL55x7/5g8cXrv+UNbq5fKTKEIHLd/vucbljaQLNetnpOyJnLnGl3Un2iYDQpFVWHzljTt/42/+vfGZT+4vUWpwOUYK0GydhrOTH/rv/sGf+oPf+5brj46e3hx8IbePT7rmFU9+IPxN9iKc6K3tEMPo6cWnvrgnawJqpW2JmQngTJ5yv7MwEdH16MkBaK+yB+kBMwyRJzOWVmkaJ5yRzTMAgHN3aXSBXGN2t3k+ANvISsmjAIoQhZWgjKaocXpMyUwPOv3ZH/p7V67u/cd/9d+/ulh4HXZNYRbojHFMlOTp5HQdE/f3ln2wZ597+ZOf+Nz+yl569vmnn35msew7iR/+Z0994jff+v5vfd/161du3Ln/vve/Z9UAHMxZmdjxwrjoWecO0bIL+txzL/zqB39pL2jylESTS6IHldK8VkxMBDALq4WZHZ+sv/rGvePNUJry4r+ivdmlIJcD9oIqkJKfxXTqcpqwcW68ALTIgtCiZt52ccjsFTLVmbMQ8CuG2z7cfBhUKg23WNEQEbEn3/qIQXo4JAm4GdOD402jjlEkgD280tLDYm8BYoxjij5GPx3Swf6iWyxGZH5iFYmrilbUzLJwcOK3aEVnCnU575I1Y1LiZHQfY0JZnGqDnooNihQhC4t4FeKjJr916/7Z8en+wV6/XN4/PDo5WYducfPu0YP7h5KH3u3/cYbWYq73mf71phgetxtx/E6iCpz/RT2rcVFln3iQMwp8ednYngnQlJUNxGI2XrEZD7YieshUuWBYhdJfNAqTmpEyboZ6BkEEDpKS8g1U/z6FLrLswsJgClMEs6AwSFDtVDvFsrPetINcXYSBjCKG4g6T7w5APPmrr91+5ea9Rx57+OHrDwWzfhFCZxYsBA0aABXLO3xUvwCdqxmLpBfwLReMPEOKmd4/Xv/l//hvffoXfv5SiJn5lWeSzD5AFRgF09t37v7u7/ld3/L135i1zdMCvapCKrx5HkznpCOZi5fb3ZL1fzMFXGOL/8JP/cIbz3y1CxUHyw9zRhfLhlMVMBSSdC9yWblUZOnGSYqnyQuqOU0t4ExUx3M0wcn1qTZMs7mknA4ZbGYZisstNwl+tjd6eeLO3Xd+zJ0ShF/+3Bevv/Vt73vvexR0caW++sadX/3002qdM927/+CLX3rmtVdvjONw49a951589XOf/mzo49nZ6Ze/8NVnn33p2kOXrz98/ctffPoLn/nMM08/Y7ZYHx/defDg+uOPL7pQG2J+LTbN+YNrvt0SLm3xUz/+07/4kz+9NC/SsmwbRSZntnZx5nZXZRH6ZSfgazcf3Dna5HEs70ZD0GuL8MSqe3Jl1xa612tvsjBZGHoVg47EOK1QZYswul078thkqr2pmQklVcbUjISH6WZvGsYi69XcCofJbqLImCaBX9XMSoNDvaybpjlORcbknSKTIJpPWBOLzDVxU3lTTK9mJv3L/EpsvXTdtqNqxhaFdEEXRxE3541fiun47OzkbHTY3eP16WZkRQ8vKtTcQagvMnSZIdc8z2+bK5B08tx4s0q/u9rH+d+bXaummOWbwsrVLiP/5KxbzszcCdqcD8KqvWJp6Ir0rhTxbC9BcowJuZEstCTtA+EY3Ukq2asmVUlpTD7E1BtM1UzNQheYUnIvJPqMmyyDPbnqXzxeb1iQAU5XD9xsvvibnz09PP1L/+s/8+6vf7vX2y4f8xlfc7hRG2qa1d0k2eYscZFsTSfVHQkUCapvvH7jhU9/ch9nEBopimxOl4GPWrcBIJ6ePvOVr8gf/IHZa2zTNpupEAQu84WIT6q1zAydzKwKapN7LZ8dFhQasNnEB0cnxUEMmVKav4u7Ak51uhb3gl7i0qQHQ2Ytg0P0TXIBm9zD+abCoK9BtSpobWO4zdmKpfMAJ/n0pLadET8QTOlOMqU0nTHHx3/vv/3Bb3zP13/Ht32Tu954/d4P/t0f/tmf+pk/8+f++A/84T9w9+atT3/i06cnw6tv3Ll3+/7x4aGZEHp6cnr71VchPHxw+Pave8fLL9/wcfPK4Qs/+dLr3/q7v/2bP/C+B4cn3/v7f+/DV/YwPRmYlmeNstZmlp3WvZ3XitPN2S//4kcsRdgkDU9CjWT1pss1nEKLPqzj6Xo8WY8mYO3Y97vwcG8P91gZ1CCqJFVI0OCrgCSwuMXMmIvPtV7wGfQIuosEZmW2S/K0Je7FTllHBVdVpMg+QmZhJmQLAy+wCn0SXDmprFCD071iwQU78jHCXaH5Ls7n9lyrc77SzemHM6FNpYRvERO9afooqtUBRIVOz/6FKRUSvsIg8JQ85Xfs4yjRt9z5ZMt4sdZ3bnUx+Nq0Qmzt28+7CbZWaP4XHVsASkEJKzvhzfRH810oz0M4IH3a7WVCazaWk+ZBNxvZ8pTTm64CFipWrQK1ugJOxDgRcZdJeCyWkU5Ac2NAEUpM3CiF0pkHETVViJrlhbhT3Aur/coyXI/h1dPoO9eMAtWO/uJXnv65D/3aX3jsX9vbW5AgQWoSN6E6RMQz3Z5eZjcWFDRvAQGBNjOe/JUQwN2vXN576Or+sVkvCRDAgqkqkuN44NDGXArJ19+445JIryBoa2/my+7JLOI8njFHg8ueyi/wJRRCg927c+fGy68ugjo4Jl/HpCILQwZsVQWe4IRKcldIB12Ykik7XCU6IL1arlOiiNGdc8R/ZgP2NZvazEM7D0EVCQvnvg0g5hrqabOpqimldsuB7ILdfu6rP/xD/+C5P/B9Lz73ym997Lee/uxncHby8X/x0Scef+To5OipLz391aeeffWll3UcW3voLCrNN05PXnvhJSVXq6W7x834mx/59Zt37nzP5uShh6586/vff/nS0lA2X9iSnW7tUreXrFM96DS88eprz3/pKyvLmxtvvI26gaVAibLFSGP0kyGRQlETRAJyddFdX4TLQZYqaqI67Y8NGUis3jVvrko5N9aTlNFp9M5MAvJGld60rtSp8wPm5IEqNgr5dxPFKHTqZKPBZvtWP0erzmE2NY+U5NUVqLJltlvSLeeZNxOFlx+nZdyeHClQESWdumeI13ma7kmRf+EinsRdNFjoAgQyprzrb/vNLXO78tlx2mE087Cdel5uZcpUCS4iw8wB1q/Ju51RIc8R5y6mqO8yYlg9BWVmcEtrWoBs34o5dx6mujDd66SvmFkTFVcuBzPYV0bFrBUuOEIx8lRB8lz8ZPQ0OAB4Uop3QgVMzVRFGMc4jjGEThWienm5fGN9Ep0zK0kWshagzi/81qef/65vfOKR35NSZqDRXUamDra3dwA1+jhshrxLLz5WXn0UROGlsguEogDh0IC7dw8Pb9y61Gloe/5piRMOB49ZEy0wyvHR/Sgxkz+nublhLxODbeIEz/XrO/JIblV1TlotkWwQ2Ad779c/+ZnXn0sxbmKKMUGhEvpQfnBQdTI/nk5RwMxS8vxtTHXZIWbCnrALwY0QWcekApdG0r2YHjt3gd4Fki4QxGHeJE9SuzJKaTFuyu1dIcgX+6qPffAXPvahj54cHfo4qECgX/r0519+8bXF3v7dmze42ahHLf4e5UYtXUkaM5RwdnqacZFu0T37+S/dvXn36Czt7x+89z3v3luELLjfluhfwIZsm4imWuktfOWpZw5v3b5spW9sT0UVrIsXFwEnwRSjE0An0qsIdNXrI0vdh4fSmqIMadUJiqpD5LqYe4hcvOTY/VDyzTSkFCKKcYrlnQnbTeaFXzcVqyzVbj8l1GmxuEgpaKYpTURXr21/8e1NNJ1IMKKIzkxGJSb+HzgVzHkTqjMlUnsnxUC8OZ1lM63WlIICUULcBSoqpbarSmJyp0KFgSSo8DFFMgaFQKMnL7PAJEaXrX15FZhf6P06L7W5t6tdMyGTzmXSU+J3rOwzP65t3P5/jmh6kuqUm1inVwnknfkOlzhDz1BTdIalaa8MpjOu6hxS9eiMLCxirXvjlFdKgMEsBM9+0RCSZ9FHWlB0lM6hpnDpTAJkdEZiTIkpBZON61TqanUHit9CMFnZZlwfxfEs+SrRE5PSjNhs/If/7o+lk+Pv+r7f+4Hv+BbVGIcNcwWvqhsy3wbNaSBXfYnizCBHYw2VfsFF2KkGI1OZQQ3Sd+qSd1nbfm1bLdWWbKR+er4N24EXPsyzGz2O6eoj1/+t/91f+cQnvoCjO6SYFYavk1YkqTBC3KEayQI6wSAORQCXzhFIxJiSiC/7ToF0uh59Zkvy5oL8r3HHVs01Zl5J0yxQ7BE9W4IU2FMBMSuTauW2J2c6ORU52ev7KOYuY4ri8uCNV0maWSF0lXqa5W66Ld+rFijucTOq+s0XX/rZH/nxowcn/+7/5t96z3vetQxBJ6t9XoR/Trdb4xt0aqfrzc/+/K/GzcCuShDpWfYoWopGcVbPxxWUFDNbdfCYVgs76LTPYIdYA8BhxuT5urv7WZJ18smUxeXNtmzzz8KlrT0mRniRvHNLs01KMeCdEdZFGFwItn0lQjl1i605W+3iZIrRoHIVJZA8QVzUZFu3PT9RalHjeeBvjmDMl1F5znP3/Mi6UFUpDkfxtfHoAMmU4IxIHgQiGIfx6PAoUTaOVCv7FtwBtoKKGYANmddonn/BJd4Bpd8ndvyk5M3NqnYXpedGsSaELfRHzM0Dd1r4arFaCTGTrWxG0WRmm5dZ08G0M3SAabbORREINM+xTAsUhUgkzcWrY7pQYiauC00QRdyzUaE5JUVKioLUKIlZ6BEMAYU/lJzR45gopNXNY0OTVFQNBwFvubp3/eolEaUnd9JB90Xf//pHP/UP/4v/5xN9+tiP/U+/6w/9wB/5i3/hG977Tk/rFIuNqEI9H22ggv1ihbCAQJg6hMFsA/TZwkmnOxmCRM9wk4h0qmYIoolb3ikXrUk42XbOTmmcN9DawrW9TYy1M5PNOO5dfeiRJ554/faNlEaB9CEoGjWikfspQFDdxHg4jssu9GYQKiTkf5EqGlPM9iIKMRWl5jney6vEfHD9Gpqfdv5wmyU8QzKnBZUXu284vYE7hQZCEcI90R1ANiprVLIQbAZ+z0t4sSeabG3z2F7hlMxdWd9/8Gs/+8H9/b0//b/6s9/w7revOjuHKUnbzu04hYHousXR6fpv/+AP/+Mf+akD5/0oSxVkyxeIpdSZlo0UlHD3Qr8Kpsve3FViUqBTGtrIX0+9lEpjml0EGJm88Lwlm/hOWx1iRtec9Xv5oInJR0A5lzxNQv/iUzb5NU3Xk2TIBByvXMlMKvE2pYs03k2D2edsWJE8xCZBkO39+45dZ+3Ht0obKqLS8jfy7dGEhXVVPw2IhR2DydCLHofhbIgxpkQxaidixyfHm+QTnXU2fnIHKZwJQbfO+WaV34SPF3pCbV/xOTJz3vnkAjeY4jXU7N0bhFUHi+0bdHYIlT1osV7CtLZmbV8BBEWn6BWmopAsKJhszhs2NYHyniiUssnMA2nBYSiJvhAdko/N/FkoXszepE6jIjJgDseVyxlUM7KV3Bsv0gxXF3a904OuXyz2lMG92idRxhgfffjy6lp/enrWb9af/qc//sVf+eXv/Nf/5L/xV/7th68fjHEoPbJhuVy5mLt89De+8LmPf/r6w9f3r1x+7ze+50uff7E7W1N0TK6eCdWwEPL1sbrV6QFRpBjpsYlWihcosUumO4+8bNvFbctS23nrIJPUdRPFIFCcnG46mAV3MgCWd9lV8MTZwrMLoT015Wg0taoxCGaAbIZBBQH5cJy4WI4dWU+5vbfuas4URrMeEDVuoJEGqu5OtLC1kTWEc5FXkYK7eGJx9ICehy7nvB3WNIWqZSgMlrmJWPkrqmcPDj/xy7/42BOPBvtX3v3Od/RBnI4LfMcwTcckFD7Gv/8j//z+0cnrX/nSfjw6GcfTZL0pRGKiM6mIAVCY2l6HDuoQAS3bFQaV6MFUWSbCehDAa+pJHZhgKsugZwm28Tz5z3OgKLvjxmRXIJLcxwiFh+bLD59pFNAIUS3aiNP3RMhSteTRS9wFin+vSDnyRRzqqBOez5sTqiAmekow+lx+JrPkigLI7Agqt3YyDZxp93EWTRSQBwCQkpuZu3tdAzj9bD2eHp8e9Mphff/odEw8XY+hXyCElDa7WXNbbfU0euvMNxGzuI0K4s6fhjeZqHCBInQH0LyoY0Lzdtza31Z2I9M56k51gFTTKkmbRzJ50zMFQ6dYqAbNrVxmIc5F+VngW/geUKjaSI6U4HAIo9dlRtVKODP72uu5DyovdPWbXA9zmErhC1q2fMsOeSIa9JFluL4KprI529y/dz8J3T15HF2Vul5vvv4b3/2X/uq/97f/b//lcLK5sr+046OP/Y8/+NJTX/w3/vf/wbXHHhPg8uVLpyfHv/4rv/TVz33x7us3bnzu0/3pbesWCcZuEYTv79K9S92Nk82DdXK6qXSEmRpggEDMNHPBVqtlMPMhuhOTMJy7jZXMxfoTa4Fz68rpPiirNJ0s51jSvnp95qkXjl+/fdCD6FLy7HNS9KJVD5EJ5AYNwbJJWxMLUmBCoasagFT2hHBKIqPQoQolHZQLlqvbfnfTR4m6NW2kgypowoyMgFn2QIbey+zpVLQAtxbjN9vkbS+E5r/Z8PHW1YHzNCZOFGry1hu3vvDJ3378LQ8hyNe97W2GHfXtzlFV8TNP4+Gtv/Rn//C7nvxTf/SlZ3/llz/Z9RirELcQW4slYTqLMNMgOAiiTEITp8dR3evyUsu8AUCQJp1JuUC94epClZo26TR3bSrtVpibQcs2rceF0V2jCNFZcWKYbexnjik6kV+b5iFUYVjWdUM0r0elofpeglSKv42zdtnFBgQpLy3plXbBuWtAG4VKE7FdAWd1XPI+ms7JxraSaryW+BijTAsAEZE4pvv3ju6cni5CdzbImnp6Go82D8yC+JvSvwpKNZ2anCzPtwkRfBMN6Zv5FW0LrC/eu57/fs0YtgyCbWuqxcETs2xSNHs3d8w25ZjFogbFwnLDnmkUNXp0MunMOEx+Rq1uC2VDRk5i6hnIUMp0SmkbjoacY2ru7FQwt3opYDGoBvCRg+6xvYWqbMZ4/3j9zHPPv++7viP4wjPTOzHCj8/Wf+zf/NMHVy7/rf/k/377wYPLlw66EJ79zd/465//wqUrV0Rt79L+/Xv3b738CsZh1emVg8Vir4cyxY3EdfY6v2a613e3T+32iY+MNdpEVUQVnRmdbn7/aHz65vHVg31jrAgFHNSJbIGJIVk5ENPuRVjUOpNOCs2HL3HCagriQPnCZz+v47EG1F2BWPHyY0vLKc+deEyVJCVuppIZEIqAHFKoR5to2VHVMVAihAIvwqZd3yGeI4fn+23LtnTbOSC/LQVYSHNCQKcpR0pg32zjrKq0imucIx286dPBptLGTEWLQjsHFQrY+njz5S88/fjbn7x++dpeWD7y+MM6fRwXMhJI4aLv3/0N3/Dy/eE0Hb984ygEVWEHJRnBeQPt9DRCk2tQOhySkscxpegZHI5EcvHREz0EO+iRUiq9fDFdRDAzlV4ZTG6ueRQr/xyirPzNLQ7n9Ey5+ygigkVnfRdY5MviqRF5z9WsWhPs8ccfIhkgfe2zHpyM602s1AkCWEC7TBJSWSw7M00pxeSZ5hwTr1ze89CxshGqa+mWVdiFK/hZc7O1+fFKSmFNfW20sqbyaFlAKcajw6Ojo9NxjCl5oo8pDTGdXyTNX8mUmNwo9OUcrgLSXW+XLUeB5ke1QwM6f6f+z8mLmSl3UeLRgK0YhKruzY72OQkAbeYgNaf5KDq1hWEv6NI0ZGvvEm0iLemwJNTNuMC5clvXH27S8XqQSTNdByiZPpoCq8My6gplTXCrFwNTQzhXc5ZboYzJ2Ft2b7m8WC07AUbK0TqlYL/ru76tX6wQcvy5mSgFQ4zv+eZv/tbf/YFnv/rsrVdvu0sk0jjg7LjbnG7u3BqP7nWmhCyXi2AKyJjSZhg0BFE4JI6xD93lhV1dWMgE/6qsz+OLqYbQP/3Mqz/8U790+fqV73j/1w8xzXJvWCR2JYO4OB1nwDPflPlZ8yKCIbIOiFK4iS5eXUcKJUmw2Qw/9j/+2NFzT5sheeEpmWom6rt7qhzXCuNAwaxuV8lWtDSVoBoMkThbj0VHKIwigyMrcZyzRBfOGLkyXx5s8QKqzSzO38Bzm732Cc+BeMxAwqz6VuibraZ2YpO3xRwzfHIW/lVXO8jY6d0Hh4888dar164ul6ussEP7fEqwWHFOcdKdUDu6e/fjn/z8r/7yb3zil35tAZrKw8texUeXzqxmxIiKdKZL04Ou8IuzUiK3UtF5GP3OmO5v0r1NGsxWV6+8eOfowSgPRjlOskniJT7RFFwFEHpWyWbVDnHS2jRGvjbBDUShy84u7/VdyLkY1IlBPjOVEHCWrmxmoXqeIaslNHMzC0lGCxuALCRFZmeC/NTnK6hkTIlavJ4KCNeMWqeTmY1ewDkHqznyVPV/jSEvgaJlzm3LYlXNVlMOTymtzzagX93fv3sW13GUQhmpKt1zIMp5wdoF2tFdYX9Nx9vKYprRK1vi8rb745v5OF7wqDQltzRHHqoUS4sSiacCFCim9fBzaVIXtFcsVDqDNSeBkko8jWut3PrcPj776QPDkEiJbMdW1TjMphwnlSwUJ52xwWvCpszz7epkLfNQUxEVpuiDy4qekp9tYozpyWtXDSFGD8k9MSYaCHgSnq3XD7/7A/HrvuuNT714FVyKKHE2jp35XmeG7nSIdFGRoKqq6yGWG9g5jjGlmNc5HfjYSocoN07jcfW/dUCgMSU/ubf5ys2f+9F/9Ad+z7c8ev2RTUyY2z3NY4gm0jsn8zDkvWVZXFWwBqSnglg0whXJxDE98fDe6dsePTo+uXH7WE1VeLDUlQlTcqg7VSFKOJTIfGXTHG2GEleafdY0nG3S3IoqOaPDXRKrOn8+zG8FYVfW2FyMgQkc2OFNzvN7s7egcmLWoLKwS99UjckmQRQmUTYuPDxIuUDntwvQZwbXMIzDyekvfvDnLl279tijj3SGrusSGl7mO9/ZybRZv/Pd7/jFX/zwh3/iwx1HGBai+8oEGCSYQZGTmOm+CLoMGoDkpHiqbskxpntDOhpjJhoIcHI2vvjGgzhSfGh9lEKDojN0EDPdOILaMJmkS5trt2K/KFJsQrQ3XFqgg9MdpDKZ6iKYEzkvepNkSGTy/FC32mBPPHk9K1ZXjNkX/ehsPF6P7ZpAZAGxbDam0vchdMGTp8TosokyxnR5f6l9GCcVPNrapVZ2zLTzW4rnlv1nJas7K0jyjVeyS/KBVgeSooyOMcYxqehisdhbLc1lvdmMmS5GCnXm/Pom/TvyfIeZJYFO9ADMLz5lJxFppjcAm00gvwbhrI2+2DG2ZiWaAKpiNZtEZO7FChGdj9GN86Sqnemys/2ge0E7k9Kt5w+47bZyBjNBQaRskg+JQ0xjoouqaReMYneOTobkLUW+sWAzy6r5cxYjXkxaNW8WH9iyL+MUPT1n1qsI8vh10AUIVUzhj7/7ne/8lvda6INaUINlPEmChfsn43/01/77X/2JnwSHM3IUdKBBovvZEEeXJIDI0mCAC89GX4Su7zsNttkMcO264JndITDIQmVMsvay2GFuUuhXL+2vj0+Otf/u7/ndwTSllJzVCZdCeJWksxpaelE9ZU70hGHlHZUXz9JJ1l/69+QCfsd3f+D7/8QfevXe8W987DOAjI7RvTMtwFg9JED2EMuBZnW5lkO+8oV2tdNNYp1/k/vGMbI5GmIyhpzW6FtcrInmO+MJS5H1zR2o0UbGIhCdmWVqG94KASvzpunTsg51yTkZTM19nHguOKUi/twKLZNK51J8y7e/V85On332lQ9813dcPtjLEY70ZmFbEq9yGB7dk/tyb29p+lM/+k99velNDzpTlUhGd09Jc8UTUUhvlnOEsjwshBBMU/Kj6Pc3iWSOalLVYCaeTERVuy4sFAd92O+sA1L0TfLTmM5i2iRPniYjuqn3hQKL6jhmagZVYK/Hfkd6oicV6Tpb9MEgBgalgdFxNjI68/CX6Cm5u9tjjz+U75ZVjs8SOTobT87GKRcHWCgDRKEi0i+6vgsppZQ8OTfRx+iXl731/SDKul4ozz8xp/qdn+ryngeUoAhQEwlQE4gX01iUtPHyPKTkiTg9HY4enJydrofNmJLTU1AJ6jHGs3UmtnPa4eBcJHqp3V6k9zmzT6Zk7zma3BRVNWahUkymfrzaJ1+0VmwsoInAVMDMGQtpIqqLQoJZ0CLZck4RcfPkvybqVUVn2A+632Fpaoq8JIRIM5Zh1abnljw6T4d0tImnQzwb0yYxiSytW/b9cfK7R2fOyTFkbhRcAJXJFEgyC5hNf8vmooa5xXCdcScmkKqqadbgHfRh0ampBPHjw+PLTzz6+FuezAtgWA7K1THJf/1DP/PhH/6xFY9FKeToHinZGwequRUxYBWsN43JhzHmNUMSOduM9HyqKgWe3N0XoVv1djTyLLk7E8WdXbD9y5e6oC899+KrD872Hnr42kPXViFkunMrzF4hmbJwZgUxZzcrq3u31197AWzonjN5mJwIi27v6tvf/rYvfPqzR7fu7vfW1c85NnNHIKjmoCStCWHQDI4JoNp1Y8JmGJrfXHQ/c0TODdzFQdFSJaHYMrbcWutNm6j5+a3Vp0JnWeRbliiYpaYVZwuSTE73DEZl32Kwis04o0rLOeOenaVr6444eZpLHMeHH3/87W9/2xvPPnvr/sk3fuv791YLegk5qp8XMyCT3Tbz2RzMPvxzHxoeHPVmwSxSRncCnlJh2EiNmZtGG4QuuMjovk70eimCWW+2XPVB1WNSiAlMsVQsTVYmV5Z2dRmuLcJBEKeMjaHGpnmSVdBHl/ZIH1R1qO1ibzjoYSBEFr3tLfoQcmlIEFeIC0+HdDawQdkZgDIglHyQ0pdm6VBrMjj3gS6yqHxrVnG7EC5ILr0qW0QrkTvnmRM/Z+uCCQ3IZuxBdWXqKarqInQKrAdfR5KSPLGMYEzO9dl4+OD07PjYU9RsOara9eHqlcVe14XOVJFSW+RiZqS5O/k1oKBlVqH5N040o8n+mpNwZTqa2ui5bew+N56rjS/mKOeWL2nzJ7DKh1SIt6ycpgaZDJLKs6mqQbEKsjLpLWeCbZndtBrsziH54D4mOn1M5eYyRTbsTRCqnRytY/IdZui0A5QtTywWPkexcam8o9k6bt4GSjF3RDY1ADuFBk2Uw03c6xcK9J3x8OhzH/r1J97+jseeeDLSNXlCXHTdRz/+hZ/+0R9fpkO10reBXI/jHdfLfdizfJ6BQlXb31vcPT4bKeaChGGM60g6R4mqrlD3BDJ03UGwK2N8MJQUIlM52N/LiWE8OvzQ3/2hX/3nH/z67/zO3/v7/qX3f+Cb3/LwZZUxJsf8093ZTtZYXM6YBbK1SCwC8lL2ICmlcUgPP/7Yu973vlee+uqqN4HEmCiaH7TMEItVCdGb5RT7hp6406mn48AmbsPkiDfZj/ACETW29XxzVsGuDIPbt9WMcVUKxmyVNxGkJkvFmafQrhtAsZFQ/M7SqvOcLAU+94kvueAd3/SOu6+/9MJzz1//zm+Lwzh71aVwtS1LPl9X+3uPPvrwredeVtVYXYbyy6jDZbbMS3SxvCM1Hb2EmSiw7GyI0Z0xRgIW8jpMlBLATtGprExCp40ZGlRH0sXOYiIr4UlkEbpl0CGON4cUsyE1oSrLDn3gKmDZBTV1T7m3AFPuKNcpbUZ68RIuF80ANYa8kHXANVObvdM5LpedmFqUM4rtZ6XtZBwvxlHr1pfVrpiVsPVmtoq5agVoEKSYhFx1oVOFgsFiSsnpWQLhpPP4bLx783A4O8kfvdMVSMBm2KzX64evXkq5L2mNh2xpqGZ6Cc7ISrOoZczthrYMu3nOPWACHcALCTC7PMiClKPmfHFGqJO503yRm3kVFm27yEIqaxFikIXJQqUv1U1q2itnkQBZJeib6GNKQppq14WuCwd7KwHu3z8kaIqzYTw6PeUFwJP4doZOrewiyGlsM9lDg5kvtEQXuNPBrALtVBU4HtMm+l4HChDk3vPPf/VzX3jkicejxxCRVAdPv/mJz453bizUhQimpib0mGSM8Z5z7MLl3rII5XgzOGQzpjE6lJ5yzAHcPQksBHe3EIaYToYR5L4hBB2dIlguewkakztHEfSGePO1z//0P/vcL3x4/4m3/J4f+Ff/nT//J6/sLTbDmjP5g3Ou7Jnx7c77VLW1kzh8y3JyFHvnu9/1a8vOM1+lFAkFS3F0wUgG1RAMZV/bduF+9/jk/jru9d0y5FU7VMW8RnYrpNEw8hQ5qUgusME7/+HNv7BtsmbudVBt7EGqamNB+CwJaCuI+Px2SzxVpL46bezET3qZH7ZVfQCGk+Nnn35+efV9D+3tP//0M9/6bd/i9ceWxtina+2FjCqrrn/nu9/5yY9+MvN+SYfAFJojQ2biG5Ixd8DOcdhkmf0iBBMZIsbknl/5EDuVPmiABMHSsNfLImgjjWYMJ6iuAjWrK7quU1t1NsR062w8jTlpNSs35GCBayvZW4TOFMLkCXkGSSmzvJyyGbFJk0c7q3ZRgZAt3LKjfGZJa6VkbdkxtJpU5tGSq2oggJHiAH0ib8hWPZ0T42ZiLBcVmArcnWLFsJ2eqCLiKXsHpBgpHEc/uns0rM846yO9ynE2Q7xx54GaxmyvPzMEOWewOe0Hy7oQM9LuOcLjeaL81/KF2G7fOYsqqV6BwpzeXVTmpYWrVNm2XFUnvc0SheDLlkcbFKboFCvTpeUopeb6W+zA2mSdUdNl0KXlBY+WXFnxYTMuAlTNxI83aZ3OsxhxXpI+F5VoLQjKnQX1XHi3y0orx7ZJH3SgrFPaX3TiMoxp/+FLD11dphRFLILq3KyHu7fv5ZVyMF11YS8oxNajHm3GyHQapTMkZ6/i1LgeIaRiHWMkAc3s8W6xWCw6VTtxe+3OvauQPZODRb88TRuPXTCEkNyR72TVfH71vakM/upzv/r3X7vx/Mt/9i/+ufe96y3DMESf/MAU27T2uQNB9R/j3HW3GgBPxrPL/u3veitDiHGjFvq+F0EcRxGVVLAepzslptSbQjP0X4QnConJ1yn12V+bNMVCObjEwvpAVUTVGn7RXTzjC7SjYFqiErPyXsMLtSmWMp0ua+6lelxtJyi8GbOALdo0e2DPAJ9mP3mha0Lh/Kkc3757dPNo7/HFGzdev3v37pXLlz35JI1iU+rXHEW6B/vAd3zgp370n2UaBxNVoWYKFU85sSDbLhGae9lNSushQX3VhSt9Z+RmjCMyi0mzL29v6ICg2Ot0GXQiQXjxVhFKgIQuBNNF1xFyFv3u2XgWczyLKHBpiWt72OsRqvC/ELWkmv9mSCrxZCORMvfvrdsMCS1hIAkty8wKOODknDfl9cxsn1D5GEiNDiZ3J8y2QiRnRirbw1h59A1ildQIijs3aVDVjJCpUJ2B3LgcHW3OTs5mkA4mf3uICIcYJc5D6GQChTjjy5Lnb7AdQ7NZMsHXslvaaXEpW45jE09guhjFRlxqrZ7Yxe175HAAavZGyQhB9ZfIqbPIQtNOs1u09KaZO1VJiBPNDdXSSc36UGQOnjsgl3ETPXlnGdqW9Tg6ec45c9cgec5+RkNMs0CnuultK8C2I14hWkUUMTnJRDtLJBSCbm/5PX/y+9/x/m8bN47eoyVLSUUvm64CViEsO9sLlvkwvVkSbsZoZpGyjk5PCvQhHHTWQ80sZeqXhkTG9XgYeTL4vbPNEOPQdYvOAn1MPowxJh9TWvT93qILZrPBixRosAXHr/7yh/6b55//E3/xL/z+7/1OqbTz+b09Rf/MbSJnuOQW81RERLoujInPvfjGs8/fvrTas8H7xUKBzXo4XkeoHnTKRLo3agIM2RctRncnIHvLbhVlPY5rxX4XFBTHQt3NU0ScySlKAz9TM12gmt4BmuYNTQ0gbhxGzYF8XiF0irsTvgPjXPgjdu0BpgibctEU2MYX35RawxhP7j64b92VRx45vHd0sNpz91lAbA07nnwVZTOmJ9/2ztWlg3i6VlFhNjQtYTV5E55TyyiSvczcXYCl6ROrTlWiyzIo3cbEfFsH0SDSAUtDp1DVjGE3u8FIibn9FHZdSJLunKbDTYrJ6TTI5aVd3ZPLy6b6rLvk/E688ncFFDkZeJpmsUHzSAAysIWcJ1LFKQGqgmymlGtFk9Hkz6+yi1j3OsnjWNLT5zSYrF9otlwzO478yqzoiChkvgrrYWh/N+bNqCcTxHE4PTlJKW27Addl49yBtdCu8q9mXvQV56x7fNRxEpXxghZ1Pbcg2nHUw4Vipbny/LzH1yRDLXupCUOfZ3E2SXe5E0XzPrjy3TNZNEPtnaI3dJrtYrQ9bDMbY3FS1QwlLMdLplJliaKYgeUgYieHMW11RhNdh7LronoxB8mrb5y0vKmJITpZ5qaCamW6nqQx3TwZ9vquT5Sut9WV9eidCZNLSnGMi75/x7uesEUIgmAKNQKJSCKLzoJpjiSGQNTGcVwP8dSsD2ZWylpyhhBUefjg1KvN0dE4vHgiqnq8iU5hYvKU0gbC/UWnasVKiFBlSi6KRR/Wrzz/o//V//u1V/61f+2P/8FFZ23wlVnutZ6Htmu7Xk9cUphNBj7520997Bc/+uqnP3V6+7V9DA7RcQQwDuNIicOYku5bq3OkMNGZ/eg95XtCs0syNPtBLoJBJYjuiyTyMAc71ZvKReY5gFu5r7Mkugqzee3FKge78lu0lfNU+QuZeZq1nXXFel6nvTsocOsnY8bLdFaa3cSDZ3az2WbcQcC7d28tVt39m7c8xuipFHfnnHDMmWkfySuPPPTYk48896XnggKCGKOTKtBCoMpifwEkOpeXV8vB5GTz7iv71zvcHOLZ6AHYW4Sz9UARM10algG9IRhE4F4sdrIWNZHrxJGZeo67Z/F4GNbRSTHgYE+vH9gqZLmbkIWE0/hX7p7NUHMgfXSeDIzkrhcmS2x28HrzuYMoPugtMW/S7s6kiol0EQcKPxhMyYV5MPHMXyguRcWFM/urtuNisk3XfFRQ8ye9GccqEJES402O0X1MHp27yXQ7NhJzSjswV2fMpsupUBZaj0ycrkml3LxBs5yfWjDyyRmn0SVnias4V+ExIx00lGPHVWJGUcvDKEih6TS213WMZEilUymVXcWmOEOdIglKGuX8VbiTQ8wuMZ4JK3kZlQ1ynZJ4rqeae5ByfoRt3UzlrTXpF8+3fnrBgTDz+TnapBcerJ/YC29/66MHV6+OcQQsukk0KO4/OLtx676Z+jBGiKnRU4zJ3c3UoNHHHOAO1dB3KaY8ytA9qHamIr6/tzhap1gwg4LZPdgME0cqj6vO9WZUkeUCBqvpkkX57aSZ4fTBr/zoPzo5fPCn/twf31ssPSZu+7r7trS5VXPlzDQaSIp/8cFf/9W//z/p3eeXJ
The existence of magnetic activity on the eclipsing binary DV Psc has been known for almost two decades. However, until recently, no evidence of periodic behaviour relevant to this activity had been found. In this study, long-term photometric observations of DV Psc are used to analyze the system's magnetic activity, seek a possible magnetic cycle and determine orbital and physical parameters. The combination of photometric and spectroscopic observations results in a unified model that describes the system over time in terms of variable spot activity. New times of minimum light are determined and an accurate astronomical ephemeris and updated O-C diagram are constructed for a total span of 19 years (1997-2017). The intense magnetic activity, as indicated by strong asymmetries in the light curves (O' Connell effect), and the periodic variation of the O-C diagram are combined to explain the system's behaviour. The existence of a third body, orbiting the eclipsing binary in an eccentric orbit, as well as a magnetic cycle are the most likely scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.