The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.
Oil palms (Elaeis guineensis) are generally able to grow economically and feasibly on various soil types, mostly in tropical countries. However, oil palms planted on acid sulfate soils were producing lesser Fresh Fruit Bunches (FFB) as compared to those on non-acid sulfate soils. The poor performance of oil palms planted on acid sulfate was mainly attributed to the presence of excess sulfates, which limits the FFB yields and vegetative growth.1 Generally, acid sulfate soils have significant amounts of free and absorbed sulfate. Jarosite generally occurs as pale yellow mottles along old root channels and on ped faces in acid sulfate soils. pH in these horizon is less than 4.0.2,3 These soils often are also high in Aluminium (Al), Al saturation and often with phosphorus (P) fixation capacity. These acid sulfate soils are known for having poor values for organic matter, bases, cation exchange capacity, water retention, water holding capacity and microbial activity, which contributes towards their low soil fertility and hence limitations in soil productivity. Of these limitations, Al toxicity and excess sulfates are two major constraints to FFB yields in oil palms. The important relationship of soil and water for managing a sustainable productivity of oil palms on acid sulfate soil are discussed in details in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.