The effect of dopants (over a concentration range from 1 to 10 mol %), namely KCl and oxalic acid (C2H2O4·2H2O, Oxa), on the growth process, crystalline perfection, and nonlinear optical (NLO) properties of ammonium dihydrogen phosphate (NH4H2PO4, ADP) single crystals grown by a slow evaporation solution growth technique has been investigated. The high-resolution X-ray diffraction (HRXRD) studies used to evaluate crystalline perfection reveal some interesting features on the ability of accommodating the dopants by the crystalline matrix. The remarkable and systematic increase in the broadness and asymmetry of the diffraction curves as the concentration increases clearly indicates that the dopants predominantly occupied the interstitial positions in the crystalline matrix. Due to the larger size of the Oxa molecule, the crystalline matrix could not accommodate these dopants, which led to the formation of a very low angle (tilt angle <1′) internal structural grain boundaries at high concentrations. The relative second harmonic generation (SHG) efficiency measurements revealed that both KCl and Oxa dopants enhance the SHG efficiency. However, at higher concentrations of Oxa, SHG efficiency of ADP is not increased but rather decreased from its undoped condition. This may be due to deterioration in the crystalline perfection as observed by HRXRD. Powder XRD and FT-IR spectral analyses confirm the slight distortion of the structure of the crystal in the presence of a high concentration of dopants (10 mol %). UV–vis study shows that the transparency is not affected much by the dopants. The surface morphology of the as-grown specimens, which is changed with the nature and concentration of dopants, was studied by scanning electron microscopy. Presence of dopants was confirmed by energy-dispersive spectrometry.
To reveal the influence of complexing agents on crystalline perfection, tristhiourea zinc(II) sulfate (ZTS), ammonium dihydrogen phosphate (ADP) and potassium hydrogen phthalate (KHP) crystals grown by slow-evaporation solution growth technique using low concentrations (5 Â 10 À3 M) of dopants like ethylenediamminetetraacetic acid (EDTA) and 1,10-phenanthroline (phen) were characterized by high-resolution X-ray diffractometry (XRD) and scanning electron microscopy (SEM). High-resolution diffraction curves (DCs) recorded for ZTS and ADP crystals doped with EDTA show that the specimen contains an epilayer, as observed by the additional peak in the DC, whereas undoped specimens do not have such additional peaks. On etching the surface layer, the additional peak due to the epilayer disappears and a very sharp DC is obtained, with full width at half-maximum (FWHM) of less than 10 arcsec, as expected from the plane wave dynamical theory of X-ray diffraction for an ideally perfect crystal. SEM micrographs also confirm the existence of an epilayer in doped specimens. The ZTS specimen has a layer with a rough surface morphology, having randomly oriented needles, whereas the ADP specimen contains a layer with dendric structure. In contrast to ADP and ZTS crystals, the DC of phen-doped KHP shows no additional peak, but it is quite broad (FWHM = 28 arcsec) with a high value of integrated intensity, (area under the DC). The broadness of the DC and the high value of indicate the formation of a mosaic layer on the surface of the crystal. However, similar to ADP and ZTS, the DC recorded after etching the surface layer of the KHP specimen shows a very sharp peak with an FWHM of 8 arcsec. An SEM photograph of phen-doped KHP shows deep cracks on the surface, confirming the mosaicity. After removing the surface layer, the SEM pictures reveal a smooth surface. A similar trend is observed with other complexing agents, like oxalic acid, bipy and picolinic acid. However, only typical examples are described in the present article where the effects were observed prominently. The investigations on ZTS, ADP and KHP crystals, employing high-resolution XRD and SEM studies, revealed that some organic dopants added to the solution during the growth lead to the formation of a surface layer, due to complexation of these dopants with the trace metal ion impurities present in the solution, which prevents the entry of impurities, including the solvent, into the crystal, thereby assisting crystal growth with high crystalline perfection. The influence of organic dopants on the second harmonic generation efficiency is also investigated.
Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd.
A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.