A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question is whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin-density-wave (SDW) type, or suddenly, as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (R(H))--a measure of the Fermi surface volume--in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. R(H) undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.
We report thermodynamic measurements in a magnetic-field-driven quantum critical point of a heavy fermion metal, YbRh2Si2. The data provide evidence for an energy scale in the equilibrium excitation spectrum that is in addition to the one expected from the slow fluctuations of the order parameter. Both energy scales approach zero as the quantum critical point is reached, thereby providing evidence for a new class of quantum criticality.
Eu 8 Ga 16 Ge 30 is the only clathrate known so far where the guest positions are fully occupied by a rare-earth element. Our investigations show that, in addition to the previously synthesized Eu 8 Ga 16 Ge 30 modification with clathrate-I structure, there exists a second modification with clathrate-VIII structure. Polycrystalline samples of both phases behave as local-moment ferromagnets with relatively low Curie temperatures ͑10.5 and 36 K͒. The charge-carrier concentrations are rather small ͑3.8 and 12.5ϫ10 20 cm Ϫ3 at 2 K͒ and, together with the low Curie temperatures, point to a semimetallic behavior. Both the specific heat and the thermal conductivity are consistent with the concept of guest atoms ''rattling'' in oversized host cages, leading to low thermal conductivities ͑''phonon glasses''͒. However, the electron mobilities are quite low, which, if intrinsic, would question the properties of an ''electron crystal'', commonly presumed in ''filled-cage'' materials. The dimensionless thermoelectric figure of merit reaches values of 0.01 at 100 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.