The Ca2+‐independent form of nitric oxide synthase was induced in rat neonatal astrocytes in primary culture by incubation with lipopolysaccharide (1 µg/ml) plus interferon‐γ (100 U/ml), and the activities of the mitochondrial respiratory chain components were assessed. Incubation for 18 h produced 25% inhibition of cytochrome c oxidase activity. NADH‐ubiquinone‐1 reductase (complex I) and succinate‐cytochrome c reductase (complex II–III) activities were not affected. Prolonged incubation for 36 h gave rise to a 56% reduction of cytochrome c oxidase activity and a 35% reduction in succinate‐cytochrome c reductase activity, but NADH‐ubiquinone‐1 reductase activity was unchanged. Citrate synthase activity was not affected by any of these conditions. The inhibition of the activities of these mitochondrial respiratory chain complexes was prevented by incubation in the presence of the specific nitric oxide synthase inhibitor NG‐monomethyl‐l‐arginine. The lipopolysaccharide/interferon‐γ treatment of the astrocytes produced an increase in glycolysis and lactate formation. These results suggest that inhibition of the mitochondrial respiratory chain after induction of astrocytic nitric oxide synthase may represent a mechanism for nitric oxide‐mediated neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.