Summary Background The recurrence of port-wine stain (PWS) blood vessels by pulsed dye laser (PDL)-induced angiogenesis is a critical barrier that must be overcome to achieve a better therapeutic outcome. Objectives To determine whether PDL-induced angiogenesis can be suppressed by topical axitinib. Methods The mRNA expression profiles of 86 angiogenic genes and phosphorylation levels of extracellular signal regulated kinases (ERKs), phosphorylated protein kinase B (AKT) and ribosomal protein S6 kinase (p70S6K) in rodent skin were examined with or without topical axitinib administration after PDL exposure. Results The PDL-induced increased transcriptional levels of angiogenic genes peaked at days 3–7 post-PDL exposure. Topical application of 0.5% axitinib effectively suppressed the PDL-induced increase in mRNA levels of the examined angiogenic genes and activation of AKT, P70S6K and ERK from days 1 to 7 post-PDL exposure. After topical administration, axitinib penetrated into rodent skin to an approximate depth of 929.5 μm. Conclusions Topical application of 0.5% axitinib can systematically suppress the PDL-induced early stages of angiogenesis via inhibition of the AKT/mammalian target of rapamycin/p70S6K and Src homology 2 domain containing transforming protein-1/mitogen-activated protein kinase kinase/ERK pathway cascades.
Background Administration of topical rapamycin (RPM) suppresses the regeneration and revascularization of photocoagulated blood vessels induced by pulsed dye laser (PDL). Objective To systematically elucidate the molecular pathophysiology of the inhibition of PDL-induced angiogenesis by topical RPM in a rodent model. Methods The mRNA expression profiles of 86 angiogenic genes and phosphorylation levels of ribosomal protein S6 kinase (P70S6K) in rodent skin were examined with or without topical RPM administration post-PDL exposure. Results The PDL-induced systematic increases in transcriptional levels of angiogenic genes showed a peak expression at days 3 to 7 post-PDL in rodent skin. Topical application of 1% RPM significantly and systematically suppressed the PDL-induced increase in mRNA levels of the examined angiogenic genes during the first five days post-PDL. The phosphorylation levels of P70S6K increased after PDL exposure but those increases were suppressed by the topical application of RPM. After topical application, RPM penetrated to an approximate depth of 768.4 µm into rodent skin. Conclusion Topical application of 1% RPM can significantly and systematically suppress the PDL-induced early stage of angiogenesis via inhibition of the AKT/mTOR/P70S6K pathway in a rodent model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.