A simple and efficient protocol is developed for the in situ generation of highly monodisperse and small (2−3 nm) silver nanoparticles in poly(vinyl alcohol) film and the fabrication of their free-standing films. Efficient optical limiting with these nanoparticle-embedded polymer thin films is demonstrated.
Metal nanoparticle-polymer composites are versatile materials which not only combine the unique characteristics of the components, but also manifest mutualistic effects between the two. Embedding inside polymer thin films facilitates immobilization and organization of the metal nanoparticles and tuning of their electronic and optical responses by the dielectric environment. The embedded metal nanoparticles in turn can impact upon the various material attributes of the polymer matrix. Some of the most convenient and attractive routes to the fabrication of metal nanoparticle-embedded polymer thin films involve in situ generation of the nanoparticles through reduction or decomposition of appropriate precursors inside the solid film. In this tutorial review we present an overview of the different methodologies developed using this general concept and describe the environment-friendly protocol we have optimized for the fabrication of noble metal nanostructures inside polymer thin films, using aqueous media for the synthesis and deploying the polymer itself as the reducing as well as stabilizing agent. A variety of techniques that have been exploited to characterize the precursor to product transformation inside the polymer film are discussed. The unique control provided by the in situ fabrication route on the size, shape and distribution of the nanostructures, and application of the polymer thin films with the in situ generated metal nanoparticles in areas such as nonlinear optics, surface enhanced Raman scattering, e-beam lithography, microwave absorption, non-volatile memory devices and random lasers, illustrate the versatility of these materials. A brief appraisal of the avenues for future developments in this area is presented.
Polygonal gold nanoplates are generated in situ in poly(vinyl alcohol) film through thermal treatment, the polymer serving as the reducing agent and stabilizer for the nanoparticle formation and enforcing preferential orientation of the plates. The rare pentagonal as well as the more commonly observed hexagonal, triangular and square/rectangle shapes are obtained by fine-tuning the Au/PVA ratio and the time and temperature of fabrication.
Precursor nanowires of potassium palladium(II) chloride crystallized inside a poly(vinyl alcohol) film are reduced to palladium nanowires by the polymer itself under mild thermal annealing. The chemical reaction occurring in situ inside the polymer film, including byproduct formation, is investigated through electronic absorption and X‐ray photoelectron spectroscopy together with atomic force and electron microscopy. The overall process can be described as a novel case of crystal‐to‐crystal transformation at the nanoscopic level. Optical limiting characteristics of the nanowire‐embedded polymer film are explored. The fabrication procedure developed, involving chemistry inside a polymer matrix mediated by the polymer, opens up a convenient route to the fabrication of free‐standing metal nanowire‐embedded thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.