We present a follow-up study on the recent detection of two X-ray flaring events by MAXI/Gas Slit Camera observations in soft and hard X-rays from MAXI J0709–159 in the direction of HD 54786 (LY CMa), on 2022 January 25. The X-ray luminosity during the flare was around 1037 erg s−1 (MAXI), which got reduced to 1032 erg s−1 (NuSTAR) after the flare. We took low-resolution spectra of HD 54786 from the 2.01 m Himalayan Chandra Telescope and the 2.34 m Vainu Bappu Telescope (VBT) facilities in India, on 2022 February 1 and 2. In addition to Hα emission, we found emission lines of He i in the optical spectrum of this star. By comparing our spectrum of the object with those from the literature we found that He i lines show variability. Using photometric studies we estimate that the star has an effective temperature of 20,000 K. Although HD 54786 is reported as a supergiant in previous studies, our analysis favors it to be evolving off the main sequence in the color–magnitude diagram. We could not detect any infrared excess, ruling out the possibility of IR emission from a dusty circumstellar disk. Our present study suggests that HD 54786 is a Be/X-ray binary system with a compact object companion, possibly a neutron star.
The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.
Computer-aided diagnosis of lung segmentation is the fundamental requirement to diagnose lung diseases. In this paper, a two-dimensional (2D) Otsu algorithm by Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) is proposed to segment the pulmonary parenchyma from the lung image obtained through computed tomography (CT) scans. The proposed method extracts pulmonary parenchyma from multi-sliced CT. This is a preprocessing step to identify pulmonary diseases such as emphysema, tumor, and lung cancer. Image segmentation plays a significant role in automated pulmonary disease diagnosis. In traditional 2D Otsu, exhaustive search plays an important role in image segmentation. However, the main disadvantage of the 2D Otsu method is its complex computation and processing time. In this paper, the 2D Otsu method optimized by DPSO and FODPSO is developed to reduce complex computations and time. The efficient segmentation is very important in object classification and detection. The particle swarm optimization (PSO) method is widely used to speed up the computation and maintain the same efficiency. In the proposed algorithm, the limitation of PSO of getting trapped in local optimum solutions is overcome. The segmentation technique is assessed and equated with the traditional 2D Otsu method. The test results demonstrate that the proposed strategy gives better results. The algorithm is tested on the Lung Image Database Consortium image collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.