Biogenic gold nanotriangles and spherical silver nanoparticles were synthesized by a simple procedure using Aloe vera leaf extract as the reducing agent. This procedure offers control over the size of the gold nanotriangle and thereby a handle to tune their optical properties, particularly the position of the longitudinal surface plasmon resonance. The kinetics of gold nanotriangle formation was followed by UV-vis-NIR absorption spectroscopy and transmission electron microscopy (TEM). The effect of reducing agent concentration in the reaction mixture on the yield and size of the gold nanotriangles was studied using transmission electron microscopy. Monitoring the formation of gold nanotriangles as a function of time using TEM reveals that multiply twinned particles (MTPs) play an important role in the formation of gold nanotriangles. It is observed that the slow rate of the reaction along with the shape directing effect of the constituents of the extract are responsible for the formation of single crystalline gold nanotriangles. Reduction of silver ions by Aloe vera extract however, led to the formation of spherical silver nanoparticles of 15.2 nm +/- 4.2 nm size.
Coupling of photons with molecular emitters in different nanocavities have resulted in transformative plasmonic applications. The rapidly expanding field of surface plasmoncoupled emission (SPCE) has synergistically employed subwavelength optical properties of localized surface plasmon resonance (LSPR) supported by nanoparticles (NPs) and propagating surface plasmon polaritons assisted by metal thin films for diagnostic and point-of-care analysis. Gold nanoparticles (AuNPs) significantly quench the molecular emission from fluorescent molecules (at close distances <5 nm). More often, complex strategies are employed for providing a spacer layer around the AuNPs to avoid direct contact with fluorescent molecules, thereby preventing quenching. In this study we demonstrate a rapid and facile strategy with the use of Au-decorated SiO 2 NPs (AuSil), a metal (Au)-dielectric (SiO 2 ) hybrid material for dequenching the otherwise quenched fluorescence emission from radiating dipoles and to realize 88-fold enhancement using the SPCE platform. Different loading of AuNPs were studied to tailor fluorescence emission enhancements in spacer, cavity, and extended (ext.) cavity nanointerfaces. We also present femtomolar detection of spermidine using this nanohybrid in a highly desirable ext. cavity interface. This interface serves as an efficient coupling configuration with dual benefits of spacer and cavity architectures that has been widely explored hitherto. The multifold hot-spots rendered by the AuSil nanohybrids assist in augmented electromagnetic (EM)-field intensity that can be captured using a smartphone-based SPCE platform presenting excellent reliability and reproducibility in spermidine detection.
We use evaporation within a microfluidic device to extract the solvent of a (possibly very dilute) dispersion of nanoparticles and concentrate the dispersion until a solid made of densely packed nanoparticles grows and totally invades the microfluidic geometry. The growth process can be rationalized as an interplay between evaporation-induced flow and kinetic and thermodynamic coefficients which are system-dependent; this yields limitations to the growth process illustrated here on two main cases: evaporation- and transport-limited growth. Importantly, we also quantify how colloidal stability may hinder the growth and show that care must be taken as to the composition of the initial dispersion, especially regarding traces of ionic species that can destabilize the suspension upon concentration. We define a stability chart, which, when fulfilled, permits us to grow and shape-up solids, including superlattices and extended and thick arrays of nanoparticles made of unary and binary dispersions, composites, and heterojunctions between distinct types of nanoparticles. In all cases, the geometry of the final solid is imparted by that of the microfluidic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.