The interconnection between obesity and central nervous system (CNS) neurological dysfunction has been widely appreciated. Accumulating evidence demonstrates that obesity is a risk factor for CNS neuroinflammation and cognitive impairment. However, the extent to which CNS disruption influences peripheral metabolism remains to be elucidated. We previously reported that myelin-enriched sulfatide loss leads to CNS neuroinflammation and cognitive decline. In this study, we further investigated the impact of CNS sulfatide deficiency on peripheral metabolism while considering sex- and age-specific effects. We found that female sulfatide-deficient mice gained significantly more body weight, exhibited higher basal glucose levels, and were glucose-intolerant during glucose-tolerance test (GTT) compared to age-matched controls under a normal diet, whereas male sulfatide-deficient mice only displayed glucose intolerance at a much older age compared to female sulfatide-deficient mice. Mechanistically, we found that increased body weight was associated with increased food intake and elevated neuroinflammation, especially in the hypothalamus, in a sex-specific manner. Our results suggest that CNS sulfatide deficiency leads to sex-specific alterations in energy homeostasis via dysregulated hypothalamic control of food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.