Due to their profusion, high durability, and rigidity, lesser weight and biodegradable nature nanocellulose (NC) is observed as the challenging tasks for the aspirants in making of the green composites. The continuous network of the cellulose nanoparticle connected through hydrogen bonding is happened mainly due to the reinforcing effect allocated to the mechanical reoccurrence phenomenon of the NC. When comparing with the nanocrystalline cellulose, the NC has significant convincing progress in the durability and rigidity, and the aspect ratio of the NC is higher than that of the NC crystal. The reinforcement effect of NC is the characteristic of the NC polymer interaction as well as the reinforcement effect eventualizing through stress transfer at the NC–polymer interface. Thus, the concentration of the reinforcement particle rises to the saturation level due to the frailty of the NC reinforcement constituent and due to surface compliance between the matrix and the filler. Due to its structural firmness and mechanical behaviors, the NC compounds are used in many industrial applications like tissue engineering, food packaging, and electronic applications. The stretchable electronic systems and instruments are awaiting the maximal attention due to its essential applications in certain domains, such as robotics artificial intelligence, brain control and machine interface, clinical devices, and health care electronic monitoring devices. In addition to that, when realizing the operational performance of electronic devices, the electronic instruments and systems must be physically expandable and flexible. The proposed study deems the technique of reinforcing the NC compounds as green agent in electronic applications, which has been associated with the composites of polymer matrix. The elongation could be achieved through the formulation of composition via elastomers. In addition, it is being focused on the illustration of functional soft development of materials that is inclusive of the conductive intrinsic polymers for the elongated electrodes and electrothermal conversion and vice versa, occupying the maximal area along with tactile sensing elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.