An o-xylene-utilizing Rhodococcus, strain B3, was isolated from enrichments with o-xylene. The pathway for o-xylene degradation was investigated by simultaneous adaptation experiments, studies of product formation by a mutant and fortuitous oxidation studies using trimethylbenzene isomers as substrates. Two pathways were found to operate simultaneously and both were inducible. The first pathway involved the oxidation of a methyl group to form 2-methyl benzyl alcohol, followed by oxidation via the corresponding acid to 3-methylcatechol. The second pathway involved oxidation of the aromatic ring to form a dimethylcatechol. The bulk of the evidence suggests that the initial reaction was catalysed by a monooxygenase rather than a dioxygenase, and that 2,3-dimethylphenol was produced as an intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.