We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.
We investigate the effects of disorder on the synchronized state of a network of Hindmarsh–Rose neuronal models. Disorder, introduced as a perturbation of the neuronal parameters, destroys the network activity by wrecking the synchronized state. The dynamics of the synchronized state is analyzed through the Kuramoto order parameter, adapted to the neuronal Hindmarsh–Rose model. We find that the coupling deeply alters the dynamics of the single units, thus demonstrating that coupling not only affects the relative motion of the units, but also the dynamical behavior of each neuron; Thus, synchronization results in a structural change of the dynamics. The Kuramoto order parameter allows to clarify the nature of the transition from perfect phase synchronization to the disordered states, supporting the notion of an abrupt, second order-like, dynamical phase transition. We find that the system is resilient up to a certain disorder threshold, after that the network abruptly collapses to a desynchronized state. The loss of perfect synchronization seems to occur even for vanishingly small values of the disorder, but the degree of synchronization (as measured by the Kuramoto order parameter) gently decreases, and the completely disordered state is never reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.