: Commercial indigenously made npn and pnp bipolar junction switching transistors used for space applications are investigated for 60 Co C-ray induced effects. The on-line as well as off-line measurements indicate that the forward current gain of the transistors decreases significantly as the accumulated dose increases. Excess base current model is employed to account for the current gain degradation. The pnp transistor undergoes as much degradation as the npn type. It is found that bulk degradation by displacement damage is the dominant mechanism leading to reduction in forward current gain of npn transistors. On the other hand it appears that, in addition to bulk damage, surface degradation due to accumulation of interface states at the silicon-silicon dioxide interface also contributes significantly to gain degradation in pnp transistor as evident from thermal annealing studies. Further, estimation reveals that the transistor with larger base width has higher displacement damage factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.