Abstract-The resonant tunneling diode (RTD) has found numerous applications in high-speed digital and analog circuits due to the key advantages associated with its folded back negative differential resistance (NDR) current-voltage (I-V) characteristics as well as its extremely small switching capacitance. Recently, the RTD has also been employed to implement high-speed and compact cellular neural/nonlinear networks (CNNs) by exploiting its quantum tunneling induced nonlinearity and symmetrical I-V characteristics for both positive and negative voltages applied across the anode and cathode terminals of the RTD. This paper proposes an RTD-based CNN architecture and investigates its operation through driving-point-plot analysis, stability and settling time study, and circuit simulation. Full-array simulation of a 128 128 RTD-based CNN for several image processing functions is performed using the Quantum Spice simulator designed at the University of Michigan, where the RTD is represented in SPICE simulator by a physics based model derived by solving Schrödinger's and Poisson's equations self-consistently. A comparative study between different CNN implementations reveals that the RTD-based CNN can be designed superior to conventional CMOS technologies in terms of integration density, operating speed, and functionality.Index Terms-Resonant tunneling diode (RTD), cellular neural/ nonlinear network (CNN), full array simulation, settling time analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.