A study was conducted on a native pasture (dominated by redgrass, Bothriochloa macra) in the Barraba district of northern New South Wales to examine the effects of 5 grazing treatments on total herbage mass, litter mass, basal cover, ground cover, sheep liveweight, wool production and soil water content (SWC, mm) at different depths. Plots were grazed with Merino wethers and data were collected from spring 1997 to spring 2001 and analysed to determine the effects of treatments on both production and sustainability. Five grazing treatments were applied in a randomised 3 replicate design. Grazing treatments were: continuous grazing at 4 and 6 sheep/ha (C4 and C6), continuous grazing at 8 sheep/ha, with subterranean clover (Trifolium subterraneum) oversown and fertiliser applied (C8+sub), and, rotational grazing at an annual stocking rate of 4 sheep/ha with pasture grazed for 4 weeks and rested for 4 weeks (R4/4), or rested for 12 weeks (R4/12).Total herbage mass declined in the C4 (control) treatment throughout the experiment and, compared with this treatment, the C6 treatment had less (P<0.007) linear trend over time, while the R4/12 treatment had a greater (P<0.001) linear trend. Stocking rates could not be maintained in the C4 and C6 treatments and sheep were supplementary fed or removed from these treatments for a total of 133 and 263 days, respectively. For ground cover, the linear trend was greater (P<0.05) in the C8+sub, R4/4, and R4/12 treatments compared with the continuously grazed C4 and C6 treatments and for litter mass this trend was also greater (P<0.05) for the R4/12 treatment than the C4 treatment. Basal cover of wiregrass (Aristida ramosa), wallaby grass (Austrodanthonia spp.) and windmill grass (Chloris truncata) was not affected by grazing treatment but for redgrass the linear trend was greater (P<0.05) in the C8+sub, R4/4, and R4/12 treatments compared with the C4 and C6 treatments. Sheep liveweight (kg/head) was greater (P<0.001) in the C8+sub treatment compared with the C4 treatment. Annual wool production (kg/head) was also higher (P<0.05) in the C8+sub treatment compared with all other treatments. Compared with the C4�treatment, significant differences in soil water content occurred in the R4/12 and C8+sub treatments, but these were predicted to be only 2.9 mm per year for the R4/12 treatment (0–30 cm depth) and 5.7 mm per year for the C8+sub treatment (30–170 cm). Use of a biophysical model indicated that evapotranspiration was the largest output term in the soil water balance and that both drainage and surface runoff of water were episodic events. A sustainability index derived from economic (equivalent annual net return ($/ha) for a 10-year period), animal production, pasture, soil health and soil water data indicated that the C4 and C6 treatments had the lowest scores for each of these parameters and the lowest overall indices. These scores were highly correlated with subjective assessments of the impact of the treatments (r�=�0.93). Overall, these data indicated substantial benefits of either rotationally grazing or the addition of fertiliser and subterranean clover to the production and sustainability of the native pasture studied.
Studies were conducted to compare visual estimates of ground cover and canopy cover by both inexperienced and experienced observers and to compare those estimates with those from more objective methods in native pastures in the high rainfall, temperate rangelands of northern NSW. Ground cover and canopy cover of 60 quadrats was estimated using visual, mapped area, digital image analysis and photo point quadrat methods. Inexperienced observers were trained by estimating ground cover of reference quadrats. Differences between mean visual estimates of ground cover and canopy cover for experienced and inexperienced observers were not significant (P>0.05). Mean ground cover estimates by the mapped area, digital image analysis and point quadrat methods were also not different from each other. The overall relationship between mean visual estimate and mean objective estimate of ground cover was non-linear (second order polynomial, R2 = 0.93), observers tending to underestimate in the mid-range (20 to 80%) of cover compared with objective methods. Mean visual estimate of ground cover was 73.7% compared with the mean objective estimate of 83.7%. Visual estimates of canopy cover (mean 34.6%) were highly correlated (R2 = 0.90) with those of the mapped area method (mean 34.3%) and the relationship was linear. Measurement of ground cover is a standard technique used in many pasture ecology and management studies and is increasingly being used by land managers to monitor pasture production and sustainability. Inexperienced observers were trained quickly and easily to estimate ground cover and canopy cover with sufficient accuracy to identify ranges of cover using visual estimation, indicating that the visual estimation technique should be suitable for estimating ground cover in land management research.
The relationships between productivity and plant species diversity were assessed using data from the Sustainable Grazing Systems (SGS) 10 national experiment sites. Each site applied up to 7 different management treatments. Sites varied in the amount of data available for analysis. Plant species diversity was assessed in terms of both the total and native species present at each site. More than 200 plant taxa were recorded over the period of the experiment, about one-third of which were native. In the majority of cases, the native species present within a treatment remained there throughout the experiments, even when fertilised and oversown with introduced species. The number of native species increased by 1 or 2 over the 3–4 years of each experiment where grasslands were less intensively used (average herbage mass >2 t DM/ha), but decreased in more heavily grazed treatments. Native grasses made much greater contributions to herbage mass than other native species. Of the more than 70 native plant species found, the most numerous were broadleaf species, which tended to be more variable under management treatments. As total species richness increased, there was a tendency for pasture productivity to be less, for the mean standing herbage mass to be less and for seasonal growth to be less stable. This depended upon experiments and tended to apply at the sites with higher annual pasture growth rates. All treatments had >10 plant species within the small (about 1.5 ha) paddocks used and larger paddocks often had many more. It was apparent from the high plant species richness at each site (about 25–100 species) that many more niches exist in these paddocks than the number of species usually sown in a pasture. Opportunities to redesign pasture mixtures to exploit more of the resources available obviously exist. Understanding of the relationships among management practices, productivity and plant species diversity is limited, but will become important as we seek more sustainable grazing systems. The studies analysed here suggested that where the herbage mass was maintained between 2 and 4 t DM/ha then species were maintained and productivity was optimised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.