Pneumatic robot manipulators are characterized by high-order, time-variant actuator dynamics, nonlinearities due to compressibility of air, external disturbances such as static and Coulomb friction, and wide range of payload variations. Conventional PID controllers suffer from problems of gain tuning under these conditions. In this paper, a new control algorithm is proposed for the position and trajectory control of pneumatic actuators based on the sliding mode control approach. The stability of motion is proved for the case of a linear, time-invariant switching surface. A disadvantage of using sliding mode control for third- and higher-order mechanical systems is the need for acceleration feedback. In this paper, to overcome this difficulty we propose the use of differential pressure. The proposed controller is simple, easy to implement, and robust to payload and parametric variations. The effectiveness of the new scheme for position and trajectory control is illustrated by experiments on an industrial piston-driven cylindrical actuator with proportional valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.