BACKGROUND: Telomeres, repetitive DNA capping ends of eukaryotic chromosomes, are important in the maintenance of genomic integrity. Perturbed telomeres are common features of many human malignancies, including colorectal cancer. METHODS: Telomere length (TL), measured by a Monochrome Multiplex Real-Time qPCR, was investigated in tumour tissues, adjacent mucosa, and blood from patients with colorectal cancer with different clinicopathological features and its impact on patient survival. TL was also measured in a limited number of liver metastases, non-cancerous liver tissues or corresponding tissues from the same patients. RESULTS: TL in tumour tissues was shorter than in the adjacent mucosa (P < 0.0001). Shorter TL was observed in tumours with lower stage than in those with advanced stages (P = 0.001). TL was shorter in tumours at the proximal than at the distal sites of the colon (P < 0.0001). Shorter TL was also associated with microsatellite instability (P = 0.001) and mucinous tumour histology (P < 0.0001). Patients with a smaller TL ratio between tumour tissues and the adjacent mucosa were associated with increased overall survival (P = 0.022). Metastasised tumours had shorter telomeres than the adjacent non-cancerous liver tissues (P = 0.0005). CONCLUSIONS: Overall, the results demonstrate differences in TL between tumours and the adjacent mucosa, between tumours located at different sites and association with patient survival.
Summary Background The distinct somatic mutations that define clinical and histopathological heterogeneity in cutaneous melanoma could be dependent on host susceptibility to exogenous factors like ultraviolet radiation. Objectives Firstly, to characterize patients with cutaneous melanoma clinically and pathologically based on the mutational status of BRAF, NRAS and TERT promoter. Secondly, to elucidate the modified features due to the presence of TERT promoter mutations over the background of either BRAF or NRAS mutations. Methods We performed a retrospective study on 563 patients with melanoma by investigating somatic mutations in BRAF, NRAS and TERT promoter. Results We observed co‐occurrence of TERT promoter mutations with BRAF and NRAS mutations in 26.3% and 6.9% of melanomas, respectively. Multivariate analysis showed an independent association between BRAF mutations and a decreased presence of cutaneous lentigines at the melanoma site, and an increased association with the presence of any MC1R polymorphism. We also observed an independent association between TERT promoter mutations and increased tumour mitotic rate. Co‐occurrence of BRAF and TERT promoter mutations was independently associated with occurrence of primary tumours at usually sun‐exposed sites, lack of histological chronic sun damage in surrounding unaffected skin at the melanoma site, and increased tumour mitotic rate. Co‐occurrence of NRAS and TERT promoter mutations was independently associated with increased tumour mitotic rate. The presence of TERT promoter together with BRAF or NRAS mutations was associated with statistically significantly worse survival. Conclusions The presence of TERT promoter mutations discriminates BRAF‐ and NRAS‐mutated tumours and indicates a higher involvement of ultraviolet‐induced damage and tumours with worse melanoma‐specific survival than those without any mutation. These observations refine classification of patients with melanoma based on mutational status.
The Goα splice variants Go1α and Go2α are subunits of the most abundant G-proteins in brain, Go1 and Go2. Only a few interacting partners binding to Go1α have been described so far and splice variant specific differences are not known. Using a yeast two-hybrid screen with constitutively active Go2α as bait, we identified Rap1GTPase activating protein (Rap1GAP) and Girdin as interacting partners of Go2α, which was confirmed by co-immunoprecipitation. Comparison of subcellular fractions from brains of wild type and Go2α−/− mice revealed no differences in the overall expression level of Girdin or Rap1GAP. However, we found higher amounts of active Rap1-GTP in brains of Go2α deficient mutants, indicating that Go2α may increase Rap1GAP activity, thereby effecting the Rap1 activation/deactivation cycle. Rap1 has been shown to be involved in neurite outgrowth and given a Rap1GAP-Go2α interaction, we found that the loss of Go2α affected axonal outgrowth. Axons of cultured cortical and hippocampal neurons prepared from embryonic Go2α−/− mice grew longer and developed more branches than those from wild type mice. Taken together we provide evidence that Go2α regulates axonal outgrowth and branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.