We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.
We investigate a new class of (n + 1)-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher dimensional solutions in massive gravity with nonlinear electrodynamics model is motivated by holographic hypothesis as well as string theory. We first construct the exact solutions of the field equations and then explore the behavior of the metric functions for different sets of model parameters. We show that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. Finally, we study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We observe that depending on the model parameters, our solutions experience a rich variety of phase structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.