Outlier detection or simply the task of point detection that are noticeably distinct and different from data sample is a predominant issue in deep learning. When a framework is constructed, these distinctive points can later lead to model training and compromise accurate predictions. Owing to this reason, it is paramount to recognize and eliminate them before constructing any supervised model and this is frequently the initial step when dealing with a deep learning issue. Over the recent few years, different numbers of outlier detector algorithms have been designed that ensure satisfactory results. However, their main disadvantages remain in the time and space complexity and unsupervised nature. In this work, a clusteringbased outlier detection called, Random Projection Deep Extreme Learning-based Chebyshev Reflective Correlation (RPDEL-CRC) is proposed. First, Gaussian Random Projection-based Deep Extreme Learning-based Clustering model is designed. Here, by applying Gaussian Random Projection function to the Deep Extreme Learning obtains the relevant and robust clusters corresponding to the data points in a significant manner. Next, with the robust clusters, outlier detection time is said to be reduced to a greater extent. In addition, a novel Chebyshev Temporal and Reflective Correlation-based Outlier Detection model is proposed to detect outliers therefore achieving high outlier detection accuracy. The proposed approach is validated with the NIFTY-50 stock market dataset. The performance of the RPDEL-CRC method is evaluated by applying it to NIFTY-50 Stock Market dataset. Finally, we compare the results of the RPDEL-CRC method to the state-of-the-art outlier detection methods using outlier detection time, accuracy, error rate and false positive rate evaluation metrics.
This paper aims to investigate certain factors that hide outliers in two dimensions such as boundary partitioning and space angular parameters. In this proposed algorithm, boundary representation of clusters, the data points that lie on the cluster boundary is stored geometrically as coordinate values such as i_bound (inliers) and o_bound(outliers). Outliers that present in dataset are investigated by boundary fitness over centroid stability. In this paper we focus to examine whether the data point lie on the boundary is treated as inliers or outliers. Several iterations are manipulated to fix the outlier point deeply. Using fuzzy clustering, data points are clustered and boundary is fixed. If the space occupied by the cluster varies for every iteration, the distance from inlier to outlier between the boundaries is calculated. After calculation, if the data point is below the threshold value, it is treated as outlier. Our proposed method shows efficiency over evaluation metrics of outlier detection performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.