This paper proposes a wavelet and artificial intelligence-enabled rapid and efficient testing procedure for patients with Severe Acute Respiratory Coronavirus Syndrome (SARS-nCoV) through a deep learning approach from thoracic X-ray images. Presently, the virus infection is diagnosed primarily by a process called the real-time Reverse Transcriptase- Polymerase Chain Reaction (rRT-PCR) based on its genetic prints. This whole procedure takes a substantial amount of time to identify and diagnose the patients infected by the virus. The proposed research uses a wavelet-based convolution neural network architectures to detect SARS-nCoV. CNN is pre-trained on the ImageNet and trained end-to-end using thoracic X-ray images. To execute Discrete Wavelet Transforms (DWT), the available mother wavelet functions from different families, namely Haar, Daubechies, Symlet, Biorthogonal, Coiflet, and Discrete Meyer, were considered. Two-level decomposition via DWT is adopted to extract prominent features peripheral and subpleural ground-glass opacities, often in the lower lobes explicitly from thoracic X-ray images to suppress noise effect, further enhancing the signal to noise ratio. The proposed wavelet-based deep learning models of both, two-class instances (COVID vs. Normal) and four-class instances (COVID-19 vs. PNA bacterial vs. PNA viral vs. Normal) were validated from publicly available databases using k-Fold Cross Validation (k-Fold CV) technique. In addition to these X-ray images, images of recent COVID-19 patients were further used to examine the model’s practicality and real-time feasibility in combating the current pandemic situation. It was observed that the Symlet 7 approximation component with two-level manifested the highest test accuracy of 98.87%, followed by Biorthogonal 2.6 with an efficiency of 98.73%. While the test accuracy for Symlet 7 and Biorthogonal 2.6 is high, Haar and Daubechies with two levels have demonstrated excellent validation accuracy on unseen data. It was also observed that the precision, the recall rate, and the dice similarity coefficient for four-class instances were 98%, 98%, and 99%, respectively, using the proposed algorithm.
The novel coronavirus (COVID-19) was first reported in the Wuhan City of China in 2019 and became a pandemic. The outbreak has caused shocking effects to the people across the globe. It is important to screen a majority of the population in every country and for the respective governments to take appropriate action. There is a need for a rapid screening system to triage and recommend the patients for appropriate treatment. Chest X-ray imaging is one of the potential modalities, which has ample advantages such as wide availability even in the villages, portability, fast data sharing option from the point of capturing to the point of investigation, etc. The aim of the proposed work is to develop a deep learning algorithm for screening COVID-19 cases by leveraging the widely available X-ray imaging. We have built a deep learning Convolutional Neural Network model utilizing a combination of the public domain (open-source COVID-19) and private data (pneumonia and normal cases). The dataset was used before and after the segmentation of the lung region for training and testing. The outcome of the classification after lung segmentation resulted in significant superiority. The average accuracy achieved by the proposed system was 96%. The heat maps incorporated in the system were helpful for our radiologists to cross-verify whether the appropriate features are identified. This system (COVID-Detect) can be used in remote places in the countries affected by COVID-19 for mass screening of suspected cases and suggesting appropriate actions, such as recommending confirmatory tests.
Autonomous Vehicles (AV) reduces human intervention by perceiving the vehicle’s location with respect to the environment. In this regard, utilization of multiple sensors corresponding to various features of environment perception yields not only detection but also enables tracking and classification of the object leading to high security and reliability. Therefore, we propose to deploy hybrid multi-sensors such as Radar, LiDAR, and camera sensors. However, the data acquired with these hybrid sensors overlaps with the wide viewing angles of the individual sensors, and hence convolutional neural network and Kalman Filter (KF) based data fusion framework was implemented with a goal to facilitate a robust object detection system to avoid collisions inroads. The complete system tested over 1000 road scenarios for real-time environment perception showed that our hardware and software configurations outperformed numerous other conventional systems. Hence, this system could potentially find its application in object detection, tracking, and classification in a real-time environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.