Abstructqew algorithms for transmission scheduling in multihop broadcast radio networks are presented. Both link scheduling and broadcast scheduling are considered. In each instance, scheduling algorithms are given that improve upon existing algorithms both theoretically and experimentally. Theoretically, it is shown that tree networks can be scheduled optimally, and that arbitrary networks can be scheduled so that the schedule is bounded by a length that is proportional to a function of the network thickness times the optimum. Previous algorithms could guarantee only that the schedules were bounded by a length no worse than the maximum node degree times optimum. Since the thickness is typically several orders of magnitude less than the maximum node degree, the algorithms presented here represent a considerable theoretical improvement. Experimentally, a realistic model of a radio network is given and the performance of the new algorithms is studied. These results show that, for both types of scheduling, the new algorithms (experimentally) perform consistently better than earlier methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.