The purpose of the current method is to create a safe and secure that helps the fish pond owners and aquatic planters in producing high quality fish by maintaining normal water levels in the fish tank. The flow of the low or high water in the fish pond will solve the long-term problem of killing fish in a fish tank. Each water quality can affect the health of animals alone. The flow of water on fish ponds discusses how every day should be monitored. This should ensure quality by handling the PH, membrane, temperature, ammonia etc. It is a symbol of good quality water quality standards and poor water quality pools and how it should be upgraded. It is recommended that a prerequisite to increase production by ensuring sustainable fresh quality, and consequently, priority should be given priority. Therefore, water quality parameters maintain balanced positions, culture is the basis for the health and development of living organisms. It is recommended to monitor and evaluate water quality parameters on a regular basis
This paper presents a photovoltaic (PV) array-integrated dual-boost isolated dc-dc converter-fed three-phase micro-inverter for the grid-connected applications. The coupled inductor and high-frequency DC link-based dc-dc converter offer more advantages over the conventional dc-dc converters used in the grid-tied PV system. A controller with an inner voltage control loop and frequency control loop is proposed to operate the converters of a micro-inverter to transfer the maximum power generated on the PV array to the grid. The inner voltage control loop generates the required control signal for the proposed high step-up dc-dc converter to extract the maximum possible power from the PV array during sunny days. It eliminates the need of cascaded connection of dc-dc converters. High maximum power point tracking (MPPT) accuracy, high voltage gain, and high energy conversion efficiency can be attained with the proposed system. The principles of operation and design considerations of the dual-boost isolated dc-dc converter-fed micro-inverter are presented. The MATLAB/Simulink simulation results are presented to validate the performance of the proposed three-phase micro-inverter.
<p>In this paper a voltage quadrupler dc-dc converter with coupled inductor and π filter is presented. The use of the coupled inductor reduces the high leakage inductance which is present in a transformer enabled converter. The output ripples in the converter is reduced by providing a π filter. The interleaved voltage quadrupler is used in this system in order to boost the output voltage. The voltage multiplier improves the output voltage gain. The main advantage of this system is more voltage gain when compared with the transformer eneabled circuit and the overall efficiency of the system is improved. The circuit is simple to control. As a final point of this research, the simulation and the hardware investigational results are presented to demonstrate the effectiveness of this proposed converter.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.