Triboelectric nanogenerators (TENGs) are in the forefront of next‐generation energy harvesting technologies, having been demonstrated as a leading candidate for numerous applications in energy harvesting and self‐powered sensing. However, critical parameters affecting TENG output behavior and their optimization are not well understood. Herein, for the first time, the power output characteristics of TENGs are fully unveiled by vigorously analyzing their impedance behavior as a function of excitation source and device parameters. In this paper, Norton's theorem, first presented in 1926 for two terminal linear electrical networks, is extended to represent TENGs, allowing accurate visualization of their dynamic power output behavior via small signal analysis. TENG impedance plots are introduced to accurately determine the peak power point of a given design, which holds paramount importance in understanding and improving TENGs. The knowledge with empirical understanding for these variations results in the design and construction of more efficient TENG devices for future applications.
Silver nanowires for flexible organic electronics have been comprehensively summarized from synthesis, film fabrication, characterization and applications to perspectives.
Silicon has been regarded as an attractive high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, Si anodes suffer from huge volume variation during cycling, which poses a critical challenge for stable battery operation. Compared with Si, Si suboxide (SiO x ) is one of the most promising candidates for high-energy-density LIBs because of its alleviated swelling and highly stable cycling performance. Whereas, the poor electronic conductivity and low (initial) Coulombic efficiency of SiO x anodes severely hinder practical applications for LIBs. Herein, for the first time, these issues are successfully solved through rationally designing hollow-structured SiO x @carbon nanotubes (CNTs)/C architectures with graphitic carbon coatings and in situ growth of CNTs. When applied as anodes in LIBs, the SiO x @CNTs/C anodes exhibit high reversible capacity, high initial Coulombic efficiency (88%), outstanding cycling performance, and extraordinary mechanical strength during the calendaring process (200 MPa). This work paves the way for developing SiO x -based anode materials for high-energy-density LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.