Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions ofH2lCO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were peiformed at initial pressures up to lOatm and initial temperatures up to 443 K. A syngas composition of 50150 by volume was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to lOatm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:02 ratio of 7:1 to minimize instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios, where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) by volume presented in this study included 80/20, 50150, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and pressures higher than about 12 atm, the ignition delay times appear to be indistinguishable with an increase in carbon monoxide. However, at high temperatures the relative composition of H2 and CO has a strong influence on ignition delay times. Model agreement is good across the range of the study, particularly at the elevated pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.