Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.
In this paper, a generalised integral called the Laplace integral is defined on unbounded intervals, and some of its properties, including necessary and sufficient condition for differentiating under the integral sign, are discussed. It is also shown that this integral is more general than the Henstock-Kurzweil integral. Finally, the Fourier transform is defined using the Laplace integral, and its well-known properties are established.
In this paper, a generalised integral called the Laplace integral is defined on unbounded intervals, and some of its properties, including necessary and sufficient condition for differentiating under the integral sign, are discussed. It is also shown that this integral is more general than the Henstock-Kurzweil integral. Finally, the Fourier transform is defined using the Laplace integral, and its well-known properties are established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.