During in situ thermal injection in oil shale mining, the shear properties of oil shale at real-time high temperatures considerably affect the stability of injection and production wellbore as well as oil and gas production. The results of this study show that the shear strength and modulus of oil shale decrease with an increase in the shear angle at real-time high temperatures. With increasing temperature, the shear strength and modulus first decrease and then increase, reaching their lowest values at 400 °C. Thereafter, at temperatures above 400 °C, the energy accumulated in the elasticity and crack propagation stages is released and a large amount of energy is liberated during the instability failure. Finally, with rising temperature, the failure stage of oil shale changes from brittle to ductile, secondary fractures gradually increase and the failure characteristics step-by-step turn from through to nonthrough cracking characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.