Multiple impeller reactors are widely used due to their advanced gas utilization and an increased volumetric mass transfer coefficient. However, with the application of Rushton impellers, gas dispersion efficiency varies between the bottom and the upper impeller levels. The present study analyzes the individual flow regime, power input and gas holdup in each compartment of a reactor equipped with four Rushton impellers. The results indicate that the pre-dispersion of the air introduced by the bottom impeller plays a key role in a better gas retention efficiency of the upper impellers. In contrast, a flooded bottom impeller adversely affects the gas dispersion of all impellers. A novel analysis of the bubble flow in the dispersed state via a two-phase CFD model reveals that a more homogenous distribution of air bubbles in the upper compartments leads to high compartment gas holdup values, but fewer bubbles in the vicinity of the impellers. The measured and simulated data of this study indicate that the upper impellers' efficiency mostly depends on the flow regime of and the pre-dispersion by the bottom impeller rather than on the upper impellers' flow regimes. These results contribute to the understanding of essential mixing processes and scaling of aerated bioreactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.