Thin films of chromia (Cr 2 O 3 ) for anti-wear protection were grown by metal-organic (MO)CVD on AISI 304 stainless steel, soda-lime glass, and (001) silicon substrates. The structural, morphological, and chemical compositions were compared for films grown by using three different, commercial, organochromium compounds; Cr(CO) 6 (1), Cr(III) (hexafluoroacetylacetonate) (2), and tris(2,2,6,6-tetra-methyl-3,5-heptanedionato) chromium (III) (3). The depositions were performed using a hot-wall reactor at 500 C, under 3 torr, using N 2 as the carrier gas and O 2 mixed with water vapor as the reactant gas. The films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), Rutherford backscattering (RBS), nuclear reaction analysis (NRA), elastic recoil detection (ERD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. The films grown with all three precursors on all three substrates were crystalline with hexagonal Cr 2 O 3 eskalonite structure. FTIR and XPS measurements confirmed the XRD results, showing IR absorption bands characteristic of Cr 2 O 3 and an oxidation state +3 of chromium. The highest growth rate was obtained with precursor (1) (20 nm min ±1 ). Films grown with (1) on stainless steel were analyzed by nanoindentation measurements and scratch test to determine the hardness and the film adhesion.
Channeling of relativistic particles in bent Si crystals is a powerful technique for use with accelerators. Its efficiency can be found to be highly dependent on the state of the surface of the crystal steering the particles. We investigated the morphology and structure of the surface of the samples that have been used with high efficiency for channeling in accelerators. Low-energy channeling of 2 MeV alpha particles or protons was used as a probe. We found that mechanical treatment of the samples leads to a superficial damaged layer, which is correlated to efficiency limitations of the crystal in accelerators. In contrast, chemical etching, which was used to treat the surface of the most efficient crystals, leaves a surface with superior perfection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.