The symmetry energy contribution to the nuclear equation of state impacts various phenomena in nuclear astrophysics, nuclear structure, and nuclear reactions. Its determination is a key objective of contemporary nuclear physics, with consequences for the understanding of dense matter within neutron stars. We examine the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy and on its density dependence at and somewhat below normal nuclear matter density. Even though some of these constraints have been derived from properties of nuclei while others have been derived from the nuclear response to electroweak and hadronic probes, within experimental uncertainties-they are consistent with each other. We also examine the most frequently used theoretical models that predict the symmetry energy and its slope parameter. By comparing existing constraints on the symmetry pressure to theories, we demonstrate how contributions of three-body forces, which are essential ingredients in neutron matter models, can be determined.
ForewordThe study of the fundamental structure of nuclear matter is a central thrust of physics research in the United States. As indicated in Frontiers of Nuclear Science, the 2007 Nuclear Science Advisory Committee long range plan, consideration of a future Electron-Ion Collider (EIC) is a priority and will likely be a significant focus of discussion at the next long range plan. We are therefore pleased to have supported the ten week program in fall 2010 at the Institute of Nuclear Theory which examined at length the science case for the EIC. This program was a major effort; it attracted the maximum allowable attendance over ten weeks.This report summarizes the current understanding of the physics and articulates important open questions that can be addressed by an EIC. It converges towards a set of "golden" experiments that illustrate both the science reach and the technical demands on such a facility, and thereby establishes a firm ground from which to launch the next phase in preparation for the upcoming long range plan discussions. We thank all the participants in this productive program. In particular, we would like to acknowledge the leadership and dedication of the five co-organizers of the program who are also the co-editors of this report.David Kaplan, Director, National Institute for Nuclear Theory Hugh Montgomery, Director, Thomas Jefferson National Accelerator Facility Steven Vigdor, Associate Lab Director, Brookhaven National Laboratory iii Preface This volume is based on a ten-week program on "Gluons and the quark sea at high energies", which took place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. Guiding questions were• What are the crucial science issues?• How do they fit within the overall goals for nuclear physics?• Why can't they be addressed adequately at existing facilities?• Will they still be interesting in the 2020's, when a suitable facility might be realized?The program started with a five-day workshop on "Perturbative and Non-Perturbative Aspects of QCD at Collider Energies", which was followed by eight weeks of regular program and a concluding four-day workshop on "The Science Case for an EIC".More than 120 theorists and experimentalists took part in the program over ten weeks. It was only possible to smoothly accommodate such a large number of participants because of the extraordinary efforts of the INT staff, to whom we extend our warm thanks and appreciation. We thank the INT Director, David Kaplan, for his strong support of the program and for covering a significant portion of the costs for printing this volume. We gratefully acknowledge additional financial support provided by BNL and JLab.The program w...
We present a search at the Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α' to electrons. Such a particle A' can be produced in electron-nucleus fixed-target scattering and then decay to an e + e- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175-250 MeV, found no evidence for an A'→ e+ e- reaction, and set an upper limit of α'/α ~/= 10(-6). Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.
The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined by using experimental data on G(E)(n), G(M)(n), G(E)(p), and G(M)(p). Such a flavor separation of the form factors became possible up to negative four-momentum transfer squared Q(2) = 3.4 GeV(2) with recent data on G(E)(n) from Hall A at Jefferson Lab. For Q(2) above 1 GeV(2), for both the u and the d quark, the ratio of the Pauli and Dirac form factors, F(2)/F(1), was found to be almost constant in sharp contrast to the behavior of F(2)/F(1) for the proton as a whole. Also, again for Q(2)>1 GeV(2), both F(2)(d) and F(1)(d) are roughly proportional to 1/Q(4), whereas the dropoff of F(2)(u) and F(1)(u) is more gradual.
We use distorted wave electron scattering calculations to extract the weak charge form factor F W (q), the weak charge radius R W , and the point neutron radius R n of 208 Pb from the Lead Radius Experiment (PREX) parity-violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transferq = 0.475 fm −1 . We find F W (q) = 0.204 ± 0.028 (exp) ± 0.001 (model). We use the Helm model to infer the weak radius from F W (q). We find R W = 5.826 ± 0.181 (exp) ± 0.027 (model) fm. Here the experimental error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R n = 5.751 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm from R W . Here there is only a very small error (strange) from possible strange quark contributions. We find R n to be slightly smaller than R W because of the nucleon's size. Finally, we find a neutron skin thickness of R n − R p = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R p is the point proton radius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.