Exposure of the immature brain to general anesthesia is common. The safety of this practice has recently been challenged in view of evidence that general anesthetics can damage developing mammalian neurons. Initial reports on immature rats raised criticism regarding the possibly unique vulnerability of this species, short duration of their brain development and a lack of close monitoring of nutritional and cardiopulmonary homeostasis during anesthesia. Therefore, we studied the neurotoxic effects of anesthesia in guinea pigs, whose brain development is longer and is mostly a prenatal phenomenon, so that anesthesia-induced neurotoxicity studies of the fetal brain can be performed by anesthetizing pregnant female pigs. Because of their large size, these animals made invasive monitoring of maternal and, indirectly, fetal well-being technically feasible. Despite adequate maintenance of maternal homeostasis, a single short maternal exposure to isoflurane, whether alone or with nitrous oxide and/or midazolam at the peak of fetal synaptogenesis, induced severe neuroapoptosis in the fetal guinea pig brain. As detected early in post-natal life, this resulted in the loss of many neurons from vulnerable brain regions, demonstrating that anesthesia-induced neuroapoptosis can cause permanent brain damage.
BackgroundPatients with Adult Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover.ObjectivesTo analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls).Methods2H2O as precursor of disaturated-phosphatidylcholine-palmitate and 113C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the 2H and 13C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured.Results1) Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2) In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p < 0.01), while the fractional synthesis rate of surfactant protein-B was not different. 3) In ARDS/ALI patients the concentrations of disaturated-phosphatidylcholine and surfactant protein-B in tracheal aspirates were markedly and significantly reduced (17% and 40% of the control values respectively).Conclusions1) Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2) In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.
Rapidly accumulating evidence indicates that clinically used general anesthesia causes massive, widespread neuroapoptotic degeneration in the developing mammalian brain. Susceptibility to anesthesia-induced neurotoxicity has been documented in rats, mice, guinea pigs, primates, and in this study, piglets; in short, anesthesia-induced developmental neuroapoptosis is not species-dependent. Our findings with piglets, like those in other immature mammals, demonstrate that relatively short exposure to anesthesia is just as detrimental to species with long periods of synaptogenesis as it is to those with short periods of synaptogenesis. However, the highly reproducible findings in different species also indicate that the timing of exposure to anesthesia is critically important; that is, brain regions that are at the peak of synaptogenesis are most vulnerable even when the exposure to anesthesia is relatively brief. Because the peak of synaptogenesis is characterized by intense, highly programmed neuronal communication that is vital for the survival and proper function of immature neurons, we conclude that anesthesia causes severe disturbances in the fine equilibrium between excitatory and inhibitory neurotransmission in the developing mammalian brain, ultimately leading to neuronal redundancy and death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.