Putrescine, spermidine and spermine are natural polyamines bearing at neutral pH the net electrical charges +2, +3 and +4 respectively. We report here the radioprotective effect of these polyamines on the radiolysis of pBR322 plasmid DNA. We observe a very efficient protection against fast neutron-induced single and double-strand breakage in the presence of spermine and spermidine, and a significantly less efficient protection in the presence of putrescine. An ionic strength dependence is observed for spermidine and spermine, but not for putrescine. Circular dichroism measurements show spermidine- and spermine-induced structural modifications of DNA, i.e. the formation of tightly packaged condensates in the concentration range corresponding to radioprotection. No structural change is observed for concentrations of putrescine affording radioprotection. We explain the radioprotection by: (1) the scavenging of OH radicals in the bulk, essentially observed in the case of putrescine; (2) a local scavenging at the sites of binding of polyamines; and (3) the reduced accessibility of the attack sites in the condensed structures induced by spermine or spermidine.
Molecular modelling of DNA-spermine complexes that takes into account the electrostatic properties of DNA, allows an explanation of the experimentally observed effects of spermine on DNA radiosensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.