A microfiber loop resonator (MLR) is fabricated by coiling a microfiber which is fabricated using a flame heating technique, into itself. A temperature response on a comb spectrum of a fabricated MLR, which is embedded in a low refractive index polymer, is investigated. The spacing of the transmission comb spectrum of the MLR is observed to be unchanged with the temperature. However, the extinction ratio of the spectrum is observed to be linearly decreased with the temperature. The slope of the extinction ratio reduction against temperature was about 0.043dB/°C. The dependence of the extinction ratio on temperature is due to the change in the material's refractive index.
Effects of immersing a microfiber knot resonator (MKR) in liquid solutions that have refractive indices close to that of silica are experimentally demonstrated and theoretically analyzed. Significant improvement in resonance extinction ratio within 2 to 10 dB was observed. To achieve a better understanding, a qualitative analysis of the coupling ratio and round-trip attenuation of the MKR is performed by using a curve-fitting method. It was observed that the coupling coefficient at the knot region increased when immersed in liquids. However, depending on the initial state of the coupling and the quantity of the increment in the coupling coefficient when immersed in a liquid, it is possible that the MKR may experience a deficit in the coupling parameter due to the sinusoidal relationship with the coupling coefficient.
We report a ring cavity passively harmonic mode-locked fiber laser using a newly developed thuliumbismuth co-doped fiber (TBF) as a gain medium in conjunction with a carbon nanotube (CNT)-based saturable absorber. The TBF laser generates a third harmonic mode-locked soliton pulse train with a high repetition rate of 50 MHz and a pulse duration of 1.86 ps. The laser operates at 1 901.6 nm with an average power of 6.6 mW, corresponding to a pulse energy of 0.132 nJ, at a 1 552 nm pump power of 723.3 mW. OCIS codes: 320.0320, 140.0140.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.