Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.
Abstract. Cytokines produced in the tumour microenvironment exert an important role in cancer pathogenesis and in the inhibition of disease progression. Cancer of the cartilage is termed metastatic chondrosarcoma; however, the signaling events resulting in mesenchymal cell transformation to sarcoma have yet to be fully elucidated. The present study aimed to characterize the cytokine expression profile in the human JJ012 chondrosarcoma cell line, as well as the effect of cytostatic proline-rich polypeptide-1 (PRP-1). Western blot experiments demonstrated that the levels of suppressor of cytokine signaling 3 (SOCS3) were upregulated in chondrocytes compared with chondrosarcoma cells. Addition of PRP-1 restored the expression of the tumor suppressors, SOCS3 and ten-eleven-translocation methylcytosine dioxygenase 1 and 2 (TET1/2), in a dose-responsive manner. It is known that methylation of histone H3K9 was eliminated from the promoters of the inflammation-associated genes. PRP-1 inhibited H3K9 demethylase activity with an IC 50 (concentration required to give half-maximal inhibition) value of 3.72 µg/ml in the chondrosarcoma cell line. Data obtained from ELISA experiments indicated that the expression of interleukin-6 (IL-6) in chondrosarcoma cells was 86-fold lower compared with that in C28 chondrocytes. In the present study, a 53-fold downregulation of IL-6 expression in co-culture of chondrosarcoma cells and C28 chondrocytes was identified as well. Downregulation of IL-6 expression has been documented in numerous other tumor types, although the reasons for this have not been fully established. In chondrosarcoma, IL-6 manifests itself as an anti-inflammatory agent and, possibly, as an anti-tumorigenic factor. To explore protein-DNA interactions leading to such differences, a gel-shift chemiluminescent assay was performed. Gel shifts were observed for chondrosarcoma and chondrocytes in the lanes that contained nuclear cell extract and oligo-IL-6 DNA. Notably, the DNA-protein complexes in C28 chondrocytes were markedly larger compared with those in chondrosarcoma cells. The mechanisms that underpin such differences, and characterization of the interacting proteins, remain to be fully elucidated.
The objective of this immunohistochemical research was to reveal the distribution of a proline-rich peptide-1 (PRP-1) in various brain structures of intact and trauma-injured rats and to identify the mechanisms of promotion of neuronal recovery processes following PRP-1 treatment. PRP-1, produced by bovine hypothalamic magnocellular cells and consisting of 15 amino acid residues, is a fragment of neurophysin vasopressin associated glycoprotein isolated from bovine neurohypophysis neurosecretory granules. PRP-1-immunoreactivity (PRP-1-IR) was detected in the brain of intact rats in the neurons of paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, in almost all cell groups in the medulla oblongata, in Purkinje and some cerebellar nuclei cells, and in nerve fibers. At 3 weeks after hemisection of the spinal cord (SC) an asymmetry of PRP-1 localization in the PVN and SON was observed: no PRP-1-IR was exhibited at the affected sides of both nuclei. Daily intramuscular administration of PRP-1 for 3 weeks significantly increased the number of PRP-1-immunoreactive (PRP-1-Ir) varicose nerve fibers, and cells in PVN and SON and in cell groups of the limbic system and brain stem. Tanycytes in the median eminence and covering ependyma also demonstrated strong PRP-1-IR. PRP-1 treatment also activated neuropeptide Y-IR (NPY-IR) in nerve fibers and immunophilin fragment-IR (IphF-IR) in lymphocytes and nerve cells. A strong increase of PRP-1-IR was observed in the PVN and SON of SC-injured rats following the treatment with another PRP (PRP-3). Preliminary physiological data demonstrate that PRP-3 is more "aggressive" in the recovery processes than PRP-1. Based on the findings regarding PRP action on neurons survival, axons regeneration, and the number of IphF-Ir lymphocytes and NPY-Ir nerve fibers, PRP is suggested to act as a neuroprotector, functioning as a putative neurotransmitter and immunomodulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.