Bioethanol was produced from the three different agro-industrial biomass residues, i.e., sugarcane bagasse (SB), rice husk (RH) and corn cob (CC)) at 35°C, 120hr with 90g of each substrate. 2% H2SO4 was used for hydrolysis of the samples while 3g of yeast (saccharomyces cerevisiae) was used for fermentation. Simple distillation was used for the distillation of the fermented broth. The concentration of reducing sugar and ethanol, quantity of produced bioethanol as well as the physical properties (pH, density, viscosity and flash point) was investigated. SB has the highest concentration of reducing sugar and ethanol as well as the quantity of produced bioethanol. The pH of bioethanol generated from all the three substrates are within the bioethanol standard value while the density, viscosity and flash point were higher than bioethanol standards. It was concluded that both SB, RH and CC has the potential of bioethanol production in commercial quantity under well-chosen production conditions.
Biodiesel is a promising alternative fuel and has gained significant attention due to the predicted depletion of conventional fossil fuels and environmental concerns. This study aims to produce biodiesel from ogbono seed oil (using 98 ml methanol and 2g potassium hydroxide (KOH) as a catalyst) via transesterification process and to determine the physiochemical properties of the biodiesel produced. The physiochemical properties of the feedstock (extracted ogbono seed oil) were also determined before the transesterification process. The physiochemical properties of the produced biodiesel showed that it has a density of 0.5±0.00 g/cm3, pour point of 2.0±0, saponification value of 58.90±0.06 mg KOH/g, ester value of 98.0±0.5% (m/m), iodine value of 26.64±0.15gI2/100g, acid value of 0.28±0.05 mgKOH/g, moisture value of 0.0006 ±0.0% and trace amounts of ash content. The results of the physiochemical properties of the produced biodiesel agree with ASTM-D6751 and EN 14214 standard. Thus, it was concluded that ogbono seed oil is an excellent feedstock for biodiesel production via base catalyzed transesterification process
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.