(1) Objective: Bacterial resistance to conventional antibiotic therapy is an increasingly significant worldwide challenge to human health. The objective is to evaluate whether bacteriophage therapy could complement or be a viable alternative to conventional antibiotic therapy in critical cases of bacterial infection related to cardiothoracic surgery. (2) Methods: Since September 2015, eight patients with multi-drug resistant or especially recalcitrant Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli infections were treated with bacteriophage preparations as a therapy of last resort according to Article 37 of the Declaration of Helsinki. Patients had infections associated with immunosuppression after organ transplantation or had infections of vascular grafts, implanted medical devices, and surgical wounds. Individualized phage preparations were administered locally, orally, or via inhalation for different durations depending on the case. All patients remained on conventional antibiotics during bacteriophage treatment. (3) Results: Patients ranged in age from 13 to 66 years old (average 48.5 ± 16.7) with seven males and one female. Eradication of target bacteria was reached in seven of eight patients. No severe adverse side effects were observed. (4) Conclusions: Phage therapy can effectively treat bacterial infections related to cardiothoracic surgery when conventional antibiotic therapy fails.
Fibrin glue has been used clinically for decades in a wide variety of surgical specialties and is now being investigated as a medium for local, prolonged drug delivery. Effective local delivery of antibacterial substances is important perioperatively in patients with implanted medical devices or postoperatively for deep wounds. However, prolonged local application of antibiotics is often not possible or simply inadequate. Biofilm formation and antibiotic resistance are also major obstacles to antibacterial therapy. In this paper we test the biocompatibility of bacteriophages incorporated within fibrin glue, track the release of bacteriophages from fibrin scaffolds, and measure the antibacterial activity of released bacteriophages. Fibrin glue polymerized in the presence of the PA5 bacteriophage released high titers of bacteriophages during 11 days of incubation in liquid medium. Released PA5 bacteriophages were effective in killing Pseudomonas aeruginosa PA01. Overall, our results show that fibrin glue can be used for sustained delivery of bacteriophages and this strategy holds promise for many antibacterial applications.
We have developed a phagebiotic composition using 8 virulent bacteriophages (2 strains of each species) which are able to lyse Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. The unique character of the developed composition is ensured by particular properties of each bacteriophage comprising the preparation, including their range of lytic activity toward specific bacterial pathogens, morphology of their plaques, cycle of their development, restriction profile of their DNAs, specificity of their genomes (based on complete genome sequencing), and other properties. The preparation did not produce any signs of acute or chronic intoxication in the experimental animals. Therapeutic and prophylactic efficiency of the phagebiotic composition was demonstrated in the prevention and treatment of the experimental acute K. pneumoniae infection in mice. The investigations have shown that the preparation possesses a high therapeutic efficiency and is highly competitive with ciprofloxacin which is very effective against the infective strain K. pneumoniae. Our small-scale clinical trial was aimed to evaluate therapeutic effectiveness of the phagebiotic composition in an epidemiological emergency situation in an intensive care unit, caused by multiresistant strains of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Seventy nine per cent of the initial samples from 14 patients' endotracheal aspirate, blood and urine were contaminated. Twenty-four hours after the 3-day phage therapy (20 ml of cocktail at a titer for each phage 10 8 pfu/ml were introduced intragastrically through a tube once a day) contamination level dropped to 21%. Hence the obtained results enabled us to create a new phagebiotic composition that may be used as an alternative to antibiotics to treat these healthcare-associated infections.
Traveler's diarrhea (TD) is caused by Escherichia coli in 30% of cases. We have developed a phage cocktail for prophylaxis of TD caused by E.coli, Shigella flexneri, Shigella sonnei, Salmonella enterica, Listeria monocytogenes or Staphylococcus aureus, and investigated its effectiveness against infection caused by the non-pathogenic Lac (-) strain of E.coli K12 C600 in animal and human trials. On the 6th day of both animal and human trials E. coli K12 C600 strain was detected in titer of 10 CFU/g of mice feces and 10 CFU/g of human feces in the control (untreated) groups, while it was not detected in the samples of either of the study (phage-treated) groups. These results have great significance because the original coliphages included in the cocktail have a broad host-range including ETEC, EAEC and EHEC strains which cause severe cases of TD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.