We demonstrate that the probability of the crayfish, P. clarkii, to tail flip in response to a touch on the dorsal tail fan is dependent on both the size and the behavioral state of the animal. Alterations in the animal's internal physical state, such as when the animal autotomizes its chelipeds, will cause larger-sized animals to tail flip; if they were not autotomized, then no tail flip response would occur. Altering the external environment by removal of water causes small crayfish, which normally habituate slowly, to rapidly habituate. Observation of large adult crayfish in a species, O. australis packardi, one that evolved to live in total cave darkness, revealed that they are more likely to tail flip than are the sighted, adult P. clarkii. Results indicate that the behavioral state of the crayfish can result in rapid and long-term alterations in the tail flip response and in habituation rates to repetitive stimuli. This ability to show plasticity in gain setting may be regulated by neuromodulators and can occur in large adults of the sighted crayfish. Differences between the two species indicate that size may not be the sole contributing factor to account for tail flip behaviors. J. Exp. Zool. 290:163-176, 2001.
Synaptic depression that is induced by electrical stimulation of the glutamatergic neuromuscular junction (NMJ) of the crayfish can be offset by recruitment of vesicles from a presynaptic reserve pool. This recruitment occurs following treatment of the NMJ with serotonin (5-HT), which results in a delay in the onset of synaptic depression induced by high frequency stimulation. The results of this study demonstrate that the releasable vesicles are insufficiently replenished during high frequency stimulation and that the readily releasable pool of vesicles (RRP) can be enhanced by the reserve pool (RP) in the presence of 5-HT. Anatomical visualization of vesicular pools by transmission electron microscopy after depression or during 5-HT treatment showed no differences in the number of docked and RRP vesicles. We propose that the RRP vesicles can recycle empty and that a role for 5-HT might be to induce a rapid enhancement of synaptic transmission during synaptic fatigue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.