More than 1000 pyropes from the Muza (J3) and Ivushka (D–C) (northeastern Siberian Platform, and Khorkich (Mz) (southwestern part of the platform) kimberlite pipes, alluvial deposits of the Muna-Markha area, and granular peridotites of the Udachnaya pipe have been analyzed for major and some minor elements. As a result, a group of pyropes was distinguished whose composition is not typical of the lherzolite paragenesis (LAC pyropes). They are predominant in the Muza pipe and are widespread over the world. This group is described as a separate paragenetic type. In all known cases, LAC pyropes belong to granular clinopyroxene-bearing harzburgites, and in situ conditions for this suite are typically below 50 kbar and 1000 °C. Our own and literature data suggest that LAC pyropes may appear when the magmas corresponding to the high-degree melting of the primary magma affect the depleted peridotites of the lithosphere mantle. The character of paleogeotherm and distribution of LAC pyropes in kimberlites and secondary collectors of varying age that occur on the Siberian Platform indicate that the lithosphere mantle was considerably thinner in the northeast and the rocks characterized by LAC pyropes played an increasingly important role in this region in the period from Paleozoic to Mesozoic and that these rocks were abundant in the lithosphere mantle of the platform’s interior. These facts as well as a considerable change in the rock composition in the lithospheric mantle and in the southwestern part of the platform in the same range of time suggest that the effect of the Permian-Triassic Siberian plume on the lithospheric mantle of the platform considerably changed its composition and structure in its separate parts.
Abstract. Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Ybn ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
Four original monomineral methods for mantle peridotite associations are used to reconstruct P–T conditions beneath the kimberlite pipes of Yakutia. The clinopyroxene Jd–Di method gives the closest coincidence with Opx barometry in accord with all physico-chemical boundaries. Garnet thermometers calibrated using Opx, Gar–Cpx and Ni-garnet thermometers and two variants of barometers were developed separately for pyroxenites and peridotites. A Cr–Sp thermobarometer uses the monomineralic version of the Ol–Sp thermometer and a newly calibrated Cr–Sp barometer. A picroilmenite method uses the Ol–Sp thermometer and a pressure-calibration of the geikielite component. Each mantle column is divided into two (upper and lower) sections by a pyroxenite layer located near 40 kbar. Below the pyroxenite layer, the lower section comprises 3–4 lithologically distinct horizons, with a thermally perturbed layer at the base. Above the pyroxenite layer are 3–5 lithologically distinct horizons, which are more fertile than the lower sections. Splitting of the geotherms characterizes most P–T diagrams and is ascribed to multistage melt percolation processes typical for the mantle beneath kimberlite pipes. The largest pipes are diamond-bearing and have a highly depleted peridotite lens above the asthenospheric layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.