Due to the inexpensive cost of amine solvent, more than 95 % of natural gas (NG) processing plants use an acid gas removal unit that utilizes an aqueous amine solvent to remove sour gas components such as carbon dioxide (CO2) and hydrogen sulfide (H2S). Different technologies are available to capture CO2 from NG. However, chemical absorption is the most reliable and used technology all over the world. However, it is challenging to determine the amine blend’s optimal composition for the effective removal of CO2 and H2S and solvent regeneration. This is mainly due to the difference in reservoir gas compositions, affecting gas removal efficiency and solvent regeneration energies. The present investigation addresses the performance of using a novel solvent blend of diisopropanolamine (DIPA) and Triethanolamine (TEA) to determine the absorption capacity of CO2 & H2S using Aspen HYSYS software. A study on the effects of solubility on CO2 absorption was performed at varying pressure (10-80 bar) and temperature (25°C to 50°C). The percentage of CO2 removal increased from 80% to 98% as the temperature increased from 25°C to 50°C. The results revealed that the concentration of CO2 and H2S in sweet gas decrease with the increase in pressure while the concentration of CO2 and H2S increases with the increase in temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.